File size: 1,329 Bytes
c553a7f 172276e c553a7f 172276e 58dac03 172276e 3a4f561 172276e 713e177 172276e 713e177 172276e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
license: apache-2.0
language:
- en
tags:
- MuseCoco
- Text2Music
---
<p align="center" width="100%">
<a href="" target="_blank"><img src="https://ai-muzic.github.io/images/musecoco/framework.png" alt="Text2Attribute" style="width: 100%; min-width: 100px; display: block; margin: auto;"></a>
</p>
# Text-to-Attribute Understanding

This is the text-to-attribute model to extract musical attributes from text, introduced in the paper [*MuseCoco: Generating Symbolic Music from Text*](https://arxiv.org/abs/2306.00110) and [first released in this repository](https://github.com/microsoft/muzic/tree/main/musecoco).
It is based on BERT-large and has multiple classification heads for diverse musical attributes:
```json
[
"Instrument",
"Rhythm Danceability",
"Rhythm Intensity",
"Artist",
"Genre",
"Bar",
"Time Signature",
"Key",
"Tempo",
"Pitch Range",
"Emotion",
"Time"
]
```
# BibTeX entry and citation info
```bibtex
@article{musecoco2023,
title={MuseCoco: Generating Symbolic Music from Text},
author={Peiling Lu, Xin Xu, Chenfei Kang, Botao Yu, Chengyi Xing, Xu Tan, Jiang Bian},
journal={arXiv preprint arXiv:2306.00110},
year={2023}
}
```
|