Xmm commited on
Commit
45f0ae6
·
1 Parent(s): ffcdeae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -28
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  license: apache-2.0
3
- base_model: google/flan-t5-large
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Rouge1
24
  type: rouge
25
- value: 39.8
26
  widget:
27
  - text: "summarize: Date: 2008-09-07, Update: The government seizes control of mortgage giants Fannie Mae and Freddie Mac, promising to inject up to $100 billion into each if they fail. In recent months, the two companies funded more than two-thirds of all home loans in the United States. Treasury Secretary Henry Paulson says the government will initially buy mortgage-backed securities worth up to $5 billion."
28
  example_title: "Example 1"
@@ -41,16 +41,13 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  # background-summaries-flan-t5-large
43
 
44
- This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the background_summ dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 2.3928
47
- - Rouge1: 39.8
48
- - Rouge2: 18.8
49
- - Rougel: 26.7
50
- - Rougelsum: 36.1
51
- - Bertscore Precision: 88.4
52
- - Bertscore Recall: 86.8
53
- - Bertscore F1: 87.5
54
 
55
  ## Model description
56
 
@@ -70,32 +67,36 @@ More information needed
70
 
71
  The following hyperparameters were used during training:
72
  - learning_rate: 1e-05
73
- - train_batch_size: 1
74
- - eval_batch_size: 1
75
  - seed: 42
 
 
 
 
76
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
77
  - lr_scheduler_type: linear
78
  - num_epochs: 10
79
 
80
  ### Training results
81
 
82
- | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bertscore Precision | Bertscore Recall | Bertscore F1 |
83
- |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------------------:|:----------------:|:------------:|
84
- | 1.6858 | 1.0 | 714 | 2.0262 | 41.1 | 19.3 | 27.1 | 37.3 | 87.9 | 87.1 | 87.5 |
85
- | 1.1309 | 2.0 | 1428 | 2.0889 | 40.8 | 19.6 | 27.3 | 37.1 | 87.8 | 87.1 | 87.4 |
86
- | 0.7568 | 3.0 | 2142 | 2.1569 | 40.8 | 19.1 | 27.3 | 37.0 | 87.8 | 87.0 | 87.4 |
87
- | 0.6779 | 4.0 | 2856 | 2.1800 | 39.5 | 18.4 | 26.4 | 35.9 | 87.8 | 86.7 | 87.2 |
88
- | 0.5567 | 5.0 | 3570 | 2.2454 | 40.1 | 19.0 | 26.8 | 36.6 | 88.2 | 86.8 | 87.4 |
89
- | 0.5264 | 6.0 | 4284 | 2.3172 | 38.8 | 18.1 | 26.1 | 35.2 | 88.0 | 86.6 | 87.3 |
90
- | 0.5046 | 7.0 | 4998 | 2.3409 | 40.1 | 19.0 | 27.0 | 36.4 | 88.4 | 86.8 | 87.6 |
91
- | 0.4465 | 8.0 | 5712 | 2.3751 | 39.8 | 18.7 | 26.7 | 36.1 | 88.4 | 86.7 | 87.6 |
92
- | 0.4524 | 9.0 | 6426 | 2.3824 | 40.0 | 19.0 | 27.1 | 36.4 | 88.5 | 86.8 | 87.6 |
93
- | 0.4308 | 10.0 | 7140 | 2.3928 | 39.8 | 18.8 | 26.7 | 36.1 | 88.4 | 86.8 | 87.5 |
94
 
95
 
96
  ### Framework versions
97
 
98
- - Transformers 4.33.1
99
- - Pytorch 1.13.1
100
- - Datasets 2.14.5
101
  - Tokenizers 0.13.3
 
1
  ---
2
  license: apache-2.0
3
+ base_model: google/flan-t5-xl
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
22
  metrics:
23
  - name: Rouge1
24
  type: rouge
25
+ value: 43.0
26
  widget:
27
  - text: "summarize: Date: 2008-09-07, Update: The government seizes control of mortgage giants Fannie Mae and Freddie Mac, promising to inject up to $100 billion into each if they fail. In recent months, the two companies funded more than two-thirds of all home loans in the United States. Treasury Secretary Henry Paulson says the government will initially buy mortgage-backed securities worth up to $5 billion."
28
  example_title: "Example 1"
 
41
 
42
  # background-summaries-flan-t5-large
43
 
44
+ This model is a fine-tuned version of [google/flan-t5-xl](https://huggingface.co/google/flan-t5-xl) on the hf_dataset_script dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 2.1489
47
+ - Rouge1: 43.0
48
+ - Rouge2: 20.2
49
+ - Rougel: 28.9
50
+ - Rougelsum: 39.5
 
 
 
51
 
52
  ## Model description
53
 
 
67
 
68
  The following hyperparameters were used during training:
69
  - learning_rate: 1e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
  - seed: 42
73
+ - distributed_type: multi-GPU
74
+ - num_devices: 2
75
+ - total_train_batch_size: 16
76
+ - total_eval_batch_size: 16
77
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
78
  - lr_scheduler_type: linear
79
  - num_epochs: 10
80
 
81
  ### Training results
82
 
83
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
84
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
85
+ | No log | 1.0 | 45 | 1.7449 | 37.9 | 17.2 | 25.4 | 34.5 |
86
+ | No log | 2.0 | 90 | 1.7964 | 40.8 | 19.0 | 27.5 | 37.3 |
87
+ | No log | 3.0 | 135 | 1.8705 | 39.5 | 18.2 | 26.7 | 36.1 |
88
+ | No log | 4.0 | 180 | 1.9253 | 40.1 | 18.7 | 27.0 | 36.6 |
89
+ | No log | 5.0 | 225 | 1.9471 | 41.8 | 19.6 | 28.0 | 38.4 |
90
+ | No log | 6.0 | 270 | 2.0004 | 42.5 | 20.0 | 28.5 | 39.0 |
91
+ | No log | 7.0 | 315 | 1.9927 | 43.2 | 20.6 | 29.1 | 39.7 |
92
+ | No log | 8.0 | 360 | 2.0119 | 42.6 | 20.4 | 28.8 | 39.1 |
93
+ | No log | 9.0 | 405 | 2.0653 | 42.7 | 20.3 | 28.7 | 39.1 |
94
+ | No log | 10.0 | 450 | 2.1489 | 43.0 | 20.2 | 28.9 | 39.5 |
95
 
96
 
97
  ### Framework versions
98
 
99
+ - Transformers 4.27.4
100
+ - Pytorch 2.0.0+cu118
101
+ - Datasets 2.11.0
102
  - Tokenizers 0.13.3