File size: 2,018 Bytes
e4eb197 05ee77f e4eb197 05ee77f e4eb197 05ee77f e4eb197 05ee77f e4eb197 05ee77f e4eb197 05ee77f e4eb197 05ee77f e4eb197 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- govreport-summarization
metrics:
- rouge
model-index:
- name: led-large-16384-govreport
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: govreport-summarization
type: govreport-summarization
config: document
split: validation
args: document
metrics:
- name: Rouge1
type: rouge
value: 0.5194151586540673
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# led-large-16384-govreport
This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the govreport-summarization dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7624
- Rouge1: 0.5194
- Rouge2: 0.2107
- Rougel: 0.2437
- Rougelsum: 0.2437
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 1.8152 | 3.65 | 500 | 1.7956 | 0.5095 | 0.2040 | 0.2382 | 0.2381 |
| 1.6981 | 3.66 | 1000 | 1.7624 | 0.5194 | 0.2107 | 0.2437 | 0.2437 |
### Framework versions
- Transformers 4.30.2
- Pytorch 1.10.0+cu102
- Datasets 2.13.1
- Tokenizers 0.13.3
|