File size: 15,634 Bytes
08072ce
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fec0ca2a170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fec0ca18200>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685542118913965620, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+sPOPhpiATwrMQw/+sPOPhpiATwrMQw/+sPOPhpiATwrMQw/+sPOPhpiATwrMQw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtHa7P6dUOL/6l38+5g6tP1vnOj+aHOM+x6q0v2ZEPr5Gdz8+Bruhv8aErr/xpSm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD6w84+GmIBPCsxDD8RgI89XBzIOjsyej36w84+GmIBPCsxDD8RgI89XBzIOjsyej36w84+GmIBPCsxDD8RgI89XBzIOjsyej36w84+GmIBPCsxDD8RgI89XBzIOjsyej2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.40383893 0.00789692 0.54762524]\n [0.40383893 0.00789692 0.54762524]\n [0.40383893 0.00789692 0.54762524]\n [0.40383893 0.00789692 0.54762524]]", "desired_goal": "[[ 1.46456    -0.7200417   0.24960318]\n [ 1.3520172   0.7300927   0.4435776 ]\n [-1.4114617  -0.1858078   0.18697843]\n [-1.26352    -1.3634269  -0.6626883 ]]", "observation": "[[0.40383893 0.00789692 0.54762524 0.07006849 0.00152672 0.06108306]\n [0.40383893 0.00789692 0.54762524 0.07006849 0.00152672 0.06108306]\n [0.40383893 0.00789692 0.54762524 0.07006849 0.00152672 0.06108306]\n [0.40383893 0.00789692 0.54762524 0.07006849 0.00152672 0.06108306]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABR6QPZgiRbrpcW4+ykMRPXMkZr0GXHk+59GavQ9V1b200YI9KHioPWDY5jxikVo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.07036976 -0.00075201  0.23285641]\n [ 0.03546504 -0.0561871   0.2435151 ]\n [-0.07559567 -0.10416614  0.06387654]\n [ 0.08226043  0.02817935  0.21344522]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBaOSOgHN6r+UhpRSlIwBbJRLMowBdJRHQKk21zg/C691fZQoaAZoCWgPQwi2Dg72Jgbmv5SGlFKUaBVLMmgWR0CpNpsd1dPddX2UKGgGaAloD0MITwgddAlH8L+UhpRSlGgVSzJoFkdAqTZhWaMJhXV9lChoBmgJaA9DCCnpYWh1cvi/lIaUUpRoFUsyaBZHQKk2ExYaHbh1fZQoaAZoCWgPQwh0Iywq4rT6v5SGlFKUaBVLMmgWR0CpOMRTS9dvdX2UKGgGaAloD0MIUbzK2qb45L+UhpRSlGgVSzJoFkdAqTiI+8oQWnV9lChoBmgJaA9DCMHFihpMw+y/lIaUUpRoFUsyaBZHQKk4UAUcn3N1fZQoaAZoCWgPQwg8pBgg0QTvv5SGlFKUaBVLMmgWR0CpOADwH7gsdX2UKGgGaAloD0MIvAM8aeGy5L+UhpRSlGgVSzJoFkdAqTq7/0dzXHV9lChoBmgJaA9DCPW9huC4DPe/lIaUUpRoFUsyaBZHQKk6gIpH7P91fZQoaAZoCWgPQwil9bcE4B/mv5SGlFKUaBVLMmgWR0CpOkeFlCkXdX2UKGgGaAloD0MIx5xn7Es29b+UhpRSlGgVSzJoFkdAqTn4fQrtmnV9lChoBmgJaA9DCLDKhcq/1vq/lIaUUpRoFUsyaBZHQKk8qPQv6CV1fZQoaAZoCWgPQwi0W8tkOJ7xv5SGlFKUaBVLMmgWR0CpPG078vVWdX2UKGgGaAloD0MIij20jxV86L+UhpRSlGgVSzJoFkdAqTw0PDpC8nV9lChoBmgJaA9DCNXnaiv21/O/lIaUUpRoFUsyaBZHQKk75SLqD9R1fZQoaAZoCWgPQwg1tteC3lvxv5SGlFKUaBVLMmgWR0CpPoLOJLuhdX2UKGgGaAloD0MIWYrkK4FU8r+UhpRSlGgVSzJoFkdAqT5GcMEzPHV9lChoBmgJaA9DCD/mAwKdyfK/lIaUUpRoFUsyaBZHQKk+DLwF1Sx1fZQoaAZoCWgPQwgmxjL9EvHzv5SGlFKUaBVLMmgWR0CpPbz987ZGdX2UKGgGaAloD0MIqPxreeU697+UhpRSlGgVSzJoFkdAqT+jwDvE0nV9lChoBmgJaA9DCBA9KZMa2tu/lIaUUpRoFUsyaBZHQKk/Z0DEFW51fZQoaAZoCWgPQwjnUlxV9t3uv5SGlFKUaBVLMmgWR0CpPy1FhG6PdX2UKGgGaAloD0MICi5W1GAa5r+UhpRSlGgVSzJoFkdAqT7dUfgaWHV9lChoBmgJaA9DCJ27XS9N0QDAlIaUUpRoFUsyaBZHQKlAvSfDk2h1fZQoaAZoCWgPQwjU8gNXeQLiv5SGlFKUaBVLMmgWR0CpQIDFyaNNdX2UKGgGaAloD0MIe/fHe9VK5L+UhpRSlGgVSzJoFkdAqUBGqgh8pnV9lChoBmgJaA9DCHrkDwaeu/m/lIaUUpRoFUsyaBZHQKk/9n7pFCt1fZQoaAZoCWgPQwhI/mDguTf8v5SGlFKUaBVLMmgWR0CpQdIg/1QJdX2UKGgGaAloD0MIABx79lwm/r+UhpRSlGgVSzJoFkdAqUGVx0dRznV9lChoBmgJaA9DCBpTsMbZdPC/lIaUUpRoFUsyaBZHQKlBW6hg3Lp1fZQoaAZoCWgPQwjgoSjQJzL2v5SGlFKUaBVLMmgWR0CpQQuWjXWfdX2UKGgGaAloD0MIpyOAm8UL7L+UhpRSlGgVSzJoFkdAqULkBS1ma3V9lChoBmgJaA9DCHtP5bSnZPS/lIaUUpRoFUsyaBZHQKlCp7x/d691fZQoaAZoCWgPQwjMm8O12kPrv5SGlFKUaBVLMmgWR0CpQm2KMvRJdX2UKGgGaAloD0MIm3RbIhec57+UhpRSlGgVSzJoFkdAqUIdn7Hhj3V9lChoBmgJaA9DCNXpQNZTK+m/lIaUUpRoFUsyaBZHQKlEGPtlZox1fZQoaAZoCWgPQwhblxqhnyn1v5SGlFKUaBVLMmgWR0CpQ9yaNMoMdX2UKGgGaAloD0MIiuYBLPJr67+UhpRSlGgVSzJoFkdAqUOiyQgcLnV9lChoBmgJaA9DCAqi7gOQmv+/lIaUUpRoFUsyaBZHQKlDU21lXil1fZQoaAZoCWgPQwi5/fLJimH/v5SGlFKUaBVLMmgWR0CpRTtxuKoAdX2UKGgGaAloD0MItTf4wmSq9r+UhpRSlGgVSzJoFkdAqUUAGKQ7tHV9lChoBmgJaA9DCIi7ehUZXQLAlIaUUpRoFUsyaBZHQKlExtUn5SF1fZQoaAZoCWgPQwgjvhOzXoz1v5SGlFKUaBVLMmgWR0CpRHb1h9b5dX2UKGgGaAloD0MI7YDrihkh8r+UhpRSlGgVSzJoFkdAqUaCAe7tiXV9lChoBmgJaA9DCH6MuWsJ2QXAlIaUUpRoFUsyaBZHQKlGRkU9IPN1fZQoaAZoCWgPQwjmBdhHp276v5SGlFKUaBVLMmgWR0CpRgxGtp22dX2UKGgGaAloD0MIMlab/1cd5b+UhpRSlGgVSzJoFkdAqUW8OG0u2HV9lChoBmgJaA9DCMAIGjOJGgLAlIaUUpRoFUsyaBZHQKlHkQMhHLB1fZQoaAZoCWgPQwgqkNlZ9E7cv5SGlFKUaBVLMmgWR0CpR1R+az/qdX2UKGgGaAloD0MIvayJBb6i4r+UhpRSlGgVSzJoFkdAqUcaIvalDXV9lChoBmgJaA9DCLO2KR4X1fa/lIaUUpRoFUsyaBZHQKlGyis4ku91fZQoaAZoCWgPQwj4/DBCeDTjv5SGlFKUaBVLMmgWR0CpSKFzMibEdX2UKGgGaAloD0MIcLVOXI53AMCUhpRSlGgVSzJoFkdAqUhlFhG6PXV9lChoBmgJaA9DCL5KPnYXqOW/lIaUUpRoFUsyaBZHQKlIKyfL9uR1fZQoaAZoCWgPQwge3J212y70v5SGlFKUaBVLMmgWR0CpR9syrPt2dX2UKGgGaAloD0MIxAWgUbr0+r+UhpRSlGgVSzJoFkdAqUmwSpR4yHV9lChoBmgJaA9DCPBMaJJY0u2/lIaUUpRoFUsyaBZHQKlJc9ovi991fZQoaAZoCWgPQwg4glSKHc3+v5SGlFKUaBVLMmgWR0CpSTnuy/sWdX2UKGgGaAloD0MILA/SU+QQ5b+UhpRSlGgVSzJoFkdAqUjp4bCJoHV9lChoBmgJaA9DCPpi78UXjQHAlIaUUpRoFUsyaBZHQKlKteVs1sN1fZQoaAZoCWgPQwj5E5UNa6oAwJSGlFKUaBVLMmgWR0CpSnmShakidX2UKGgGaAloD0MI6KG2DaOg6L+UhpRSlGgVSzJoFkdAqUo/ZmI0qHV9lChoBmgJaA9DCCl64GOwYvK/lIaUUpRoFUsyaBZHQKlJ7ylN1yN1fZQoaAZoCWgPQwgTDyibcoXsv5SGlFKUaBVLMmgWR0CpS/c0+C9RdX2UKGgGaAloD0MINXugFRgSAcCUhpRSlGgVSzJoFkdAqUu6lvZRK3V9lChoBmgJaA9DCNYe9kIBm/+/lIaUUpRoFUsyaBZHQKlLgGzKLbZ1fZQoaAZoCWgPQwjNO07RkZwDwJSGlFKUaBVLMmgWR0CpSzDrRjSYdX2UKGgGaAloD0MIoZ+p1y2C47+UhpRSlGgVSzJoFkdAqU0SdH2AXnV9lChoBmgJaA9DCIJ1HD9Umui/lIaUUpRoFUsyaBZHQKlM1h9b5dp1fZQoaAZoCWgPQwjl02NbBpz1v5SGlFKUaBVLMmgWR0CpTJv6be/IdX2UKGgGaAloD0MIvcgE/BpJ8b+UhpRSlGgVSzJoFkdAqUxL37DVIHV9lChoBmgJaA9DCE7RkVz+Q+u/lIaUUpRoFUsyaBZHQKlOJ+6y0KJ1fZQoaAZoCWgPQwhoWfePhWjov5SGlFKUaBVLMmgWR0CpTeuMVDa5dX2UKGgGaAloD0MIavmBqzyB7L+UhpRSlGgVSzJoFkdAqU2xi5NGmXV9lChoBmgJaA9DCDojSnuDL/q/lIaUUpRoFUsyaBZHQKlNYXqJMxp1fZQoaAZoCWgPQwizRdJu9DH1v5SGlFKUaBVLMmgWR0CpT0LmyPdVdX2UKGgGaAloD0MIda+T+rK037+UhpRSlGgVSzJoFkdAqU8GRgZ0jnV9lChoBmgJaA9DCBOB6h9EMue/lIaUUpRoFUsyaBZHQKlOzBFd9lV1fZQoaAZoCWgPQwhwRPesa3Tyv5SGlFKUaBVLMmgWR0CpTnwkX1rZdX2UKGgGaAloD0MI3EduTbot7b+UhpRSlGgVSzJoFkdAqVBWxB3RonV9lChoBmgJaA9DCIJy275Hfey/lIaUUpRoFUsyaBZHQKlQGmY0EYB1fZQoaAZoCWgPQwj9T/7uHfX3v5SGlFKUaBVLMmgWR0CpT+AdwNsndX2UKGgGaAloD0MI5WN3gZKC4L+UhpRSlGgVSzJoFkdAqU+P7aZhKHV9lChoBmgJaA9DCLrA5bFmZOe/lIaUUpRoFUsyaBZHQKlRcEFnqV11fZQoaAZoCWgPQwgWinQ/p2D9v5SGlFKUaBVLMmgWR0CpUTPS+g14dX2UKGgGaAloD0MIX3089N2t7L+UhpRSlGgVSzJoFkdAqVD5z/6wdXV9lChoBmgJaA9DCNqNPuYDwvG/lIaUUpRoFUsyaBZHQKlQqgqVhTh1fZQoaAZoCWgPQwiwyoXKv5brv5SGlFKUaBVLMmgWR0CpUvS6tknUdX2UKGgGaAloD0MIpfj4hOw8AMCUhpRSlGgVSzJoFkdAqVK5R2r4nHV9lChoBmgJaA9DCPxvJTs2Auu/lIaUUpRoFUsyaBZHQKlSf+iJwbV1fZQoaAZoCWgPQwimC7H6I8z8v5SGlFKUaBVLMmgWR0CpUjHj6vaDdX2UKGgGaAloD0MIpyA/G7lu3r+UhpRSlGgVSzJoFkdAqVSvUMG5c3V9lChoBmgJaA9DCDTaqiSyT/q/lIaUUpRoFUsyaBZHQKlUc8wpON51fZQoaAZoCWgPQwg/dEF9yxzpv5SGlFKUaBVLMmgWR0CpVDqB3A2ydX2UKGgGaAloD0MI4BCq1OwB5b+UhpRSlGgVSzJoFkdAqVPrfR/mT3V9lChoBmgJaA9DCEvl7QinRfO/lIaUUpRoFUsyaBZHQKlWeC/47BB1fZQoaAZoCWgPQwgPYmcKnRf0v5SGlFKUaBVLMmgWR0CpVjyxZ+x4dX2UKGgGaAloD0MIwvf+Bu3V2r+UhpRSlGgVSzJoFkdAqVYC/yoXK3V9lChoBmgJaA9DCC/cuTDSC+i/lIaUUpRoFUsyaBZHQKlVs/k/8l51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}