File size: 1,413 Bytes
9f5ace5 9f8e064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
---
license: mit
---
# Cross-Encoder for MS Marco
This model was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task.
The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See our paper [R2ANKER](https://arxiv.org/pdf/2206.08063.pdf) for more details.
## Usage with Transformers
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("YCZhou/R2ANKER")
model = AutoModelForSequenceClassification.from_pretrained("YCZhou/R2ANKER")
features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
model.eval()
with torch.no_grad():
scores = model(**features).logits
print(scores)
```
## Citation
```
@article{zhou2022towards,
title={Towards robust ranker for text retrieval},
author={Zhou, Yucheng and Shen, Tao and Geng, Xiubo and Tao, Chongyang and Xu, Can and Long, Guodong and Jiao, Binxing and Jiang, Daxin},
journal={arXiv preprint arXiv:2206.08063},
year={2022}
}
``` |