update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: Test-demo-colab
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# Test-demo-colab
|
13 |
+
|
14 |
+
This model was trained from scratch on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.9479
|
17 |
+
- Wer: 0.6856
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 0.0001
|
37 |
+
- train_batch_size: 8
|
38 |
+
- eval_batch_size: 8
|
39 |
+
- seed: 42
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- lr_scheduler_warmup_steps: 1000
|
43 |
+
- num_epochs: 30
|
44 |
+
- mixed_precision_training: Native AMP
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
49 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
50 |
+
| 4.2676 | 1.0 | 500 | 2.2725 | 1.0013 |
|
51 |
+
| 2.0086 | 2.01 | 1000 | 1.2788 | 0.8053 |
|
52 |
+
| 1.6389 | 3.01 | 1500 | 1.1333 | 0.7458 |
|
53 |
+
| 1.4908 | 4.02 | 2000 | 1.0369 | 0.7356 |
|
54 |
+
| 1.4137 | 5.02 | 2500 | 0.9894 | 0.7111 |
|
55 |
+
| 1.3507 | 6.02 | 3000 | 0.9394 | 0.7098 |
|
56 |
+
| 1.3101 | 7.03 | 3500 | 0.9531 | 0.6966 |
|
57 |
+
| 1.2682 | 8.03 | 4000 | 0.9255 | 0.6892 |
|
58 |
+
| 1.239 | 9.04 | 4500 | 0.9222 | 0.6818 |
|
59 |
+
| 1.2161 | 10.04 | 5000 | 0.9079 | 0.6911 |
|
60 |
+
| 1.1871 | 11.04 | 5500 | 0.9100 | 0.7033 |
|
61 |
+
| 1.1688 | 12.05 | 6000 | 0.9080 | 0.6924 |
|
62 |
+
| 1.1383 | 13.05 | 6500 | 0.9097 | 0.6910 |
|
63 |
+
| 1.1304 | 14.06 | 7000 | 0.9052 | 0.6810 |
|
64 |
+
| 1.1181 | 15.06 | 7500 | 0.9025 | 0.6847 |
|
65 |
+
| 1.0905 | 16.06 | 8000 | 0.9296 | 0.6832 |
|
66 |
+
| 1.0744 | 17.07 | 8500 | 0.9120 | 0.6912 |
|
67 |
+
| 1.0675 | 18.07 | 9000 | 0.9039 | 0.6864 |
|
68 |
+
| 1.0511 | 19.08 | 9500 | 0.9157 | 0.7004 |
|
69 |
+
| 1.0401 | 20.08 | 10000 | 0.9259 | 0.6792 |
|
70 |
+
| 1.0319 | 21.08 | 10500 | 0.9478 | 0.6976 |
|
71 |
+
| 1.0194 | 22.09 | 11000 | 0.9438 | 0.6820 |
|
72 |
+
| 1.0117 | 23.09 | 11500 | 0.9577 | 0.6891 |
|
73 |
+
| 1.0038 | 24.1 | 12000 | 0.9670 | 0.6918 |
|
74 |
+
| 0.9882 | 25.1 | 12500 | 0.9579 | 0.6884 |
|
75 |
+
| 0.9979 | 26.1 | 13000 | 0.9502 | 0.6869 |
|
76 |
+
| 0.9767 | 27.11 | 13500 | 0.9537 | 0.6833 |
|
77 |
+
| 0.964 | 28.11 | 14000 | 0.9525 | 0.6880 |
|
78 |
+
| 0.9867 | 29.12 | 14500 | 0.9479 | 0.6856 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.17.0
|
84 |
+
- Pytorch 1.11.0+cu113
|
85 |
+
- Datasets 1.18.3
|
86 |
+
- Tokenizers 0.12.1
|