Upload handler.py
Browse files- handler.py +389 -0
handler.py
ADDED
|
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Any
|
| 2 |
+
from scipy.special import softmax
|
| 3 |
+
import numpy as np
|
| 4 |
+
import weakref
|
| 5 |
+
from utils import (
|
| 6 |
+
clean_str,
|
| 7 |
+
clean_str_nopunct,
|
| 8 |
+
MultiHeadModel,
|
| 9 |
+
BertInputBuilder,
|
| 10 |
+
get_num_words,
|
| 11 |
+
preprocess_transcript_for_eliciting,
|
| 12 |
+
preprocess_raw_files,
|
| 13 |
+
post_processing_output_json,
|
| 14 |
+
compute_student_engagement,
|
| 15 |
+
compute_talk_time,
|
| 16 |
+
gpt4_filtering_selection
|
| 17 |
+
)
|
| 18 |
+
import torch
|
| 19 |
+
from transformers import BertTokenizer, BertForSequenceClassification, AutoModelForSequenceClassification, AutoTokenizer
|
| 20 |
+
|
| 21 |
+
UPTAKE_MODEL='ddemszky/uptake-model'
|
| 22 |
+
QUESTION_MODEL ='ddemszky/question-detection'
|
| 23 |
+
ELICITING_MODEL = 'YaHi/teacher_electra_small'
|
| 24 |
+
|
| 25 |
+
class UptakeUtterance:
|
| 26 |
+
def __init__(self, speaker, text, uid=None,
|
| 27 |
+
transcript=None, starttime=None, endtime=None, **kwargs):
|
| 28 |
+
self.speaker = speaker
|
| 29 |
+
self.text = text
|
| 30 |
+
self.prev_utt = None
|
| 31 |
+
self.uid = uid
|
| 32 |
+
self.starttime = starttime
|
| 33 |
+
self.endtime = endtime
|
| 34 |
+
self.transcript = weakref.ref(transcript) if transcript else None
|
| 35 |
+
self.props = kwargs
|
| 36 |
+
|
| 37 |
+
self.uptake = None
|
| 38 |
+
self.question = None
|
| 39 |
+
|
| 40 |
+
def get_clean_text(self, remove_punct=False):
|
| 41 |
+
if remove_punct:
|
| 42 |
+
return clean_str_nopunct(self.text)
|
| 43 |
+
return clean_str(self.text)
|
| 44 |
+
|
| 45 |
+
def get_num_words(self):
|
| 46 |
+
if self.text is None:
|
| 47 |
+
return 0
|
| 48 |
+
return get_num_words(self.text)
|
| 49 |
+
|
| 50 |
+
def to_dict(self):
|
| 51 |
+
return {
|
| 52 |
+
'speaker': self.speaker,
|
| 53 |
+
'text': self.text,
|
| 54 |
+
'prev_utt': self.prev_utt,
|
| 55 |
+
'uid': self.uid,
|
| 56 |
+
'starttime': self.starttime,
|
| 57 |
+
'endtime': self.endtime,
|
| 58 |
+
'uptake': self.uptake,
|
| 59 |
+
'question': self.question,
|
| 60 |
+
**self.props
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
def __repr__(self):
|
| 64 |
+
return f"Utterance(speaker='{self.speaker}'," \
|
| 65 |
+
f"text='{self.text}', prev_utt='{self.prev_utt}', uid={self.uid}," \
|
| 66 |
+
f"starttime={self.starttime}, endtime={self.endtime}, props={self.props})"
|
| 67 |
+
|
| 68 |
+
class UptakeTranscript:
|
| 69 |
+
def __init__(self, **kwargs):
|
| 70 |
+
self.utterances = []
|
| 71 |
+
self.params = kwargs
|
| 72 |
+
|
| 73 |
+
def add_utterance(self, utterance):
|
| 74 |
+
utterance.transcript = weakref.ref(self)
|
| 75 |
+
self.utterances.append(utterance)
|
| 76 |
+
|
| 77 |
+
def get_idx(self, idx):
|
| 78 |
+
if idx >= len(self.utterances):
|
| 79 |
+
return None
|
| 80 |
+
return self.utterances[idx]
|
| 81 |
+
|
| 82 |
+
def get_uid(self, uid):
|
| 83 |
+
for utt in self.utterances:
|
| 84 |
+
if utt.uid == uid:
|
| 85 |
+
return utt
|
| 86 |
+
return None
|
| 87 |
+
|
| 88 |
+
def length(self):
|
| 89 |
+
return len(self.utterances)
|
| 90 |
+
|
| 91 |
+
def to_dict(self):
|
| 92 |
+
return {
|
| 93 |
+
'utterances': [utterance.to_dict() for utterance in self.utterances],
|
| 94 |
+
**self.params
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
def __repr__(self):
|
| 98 |
+
return f"Transcript(utterances={self.utterances}, custom_params={self.params})"
|
| 99 |
+
|
| 100 |
+
class ElicitingUtterance:
|
| 101 |
+
def __init__(self, speaker, text, starttime, endtime, uid=None, transcript=None, prev_utt=None):
|
| 102 |
+
self.speaker = speaker
|
| 103 |
+
self.text = clean_str_nopunct(text)
|
| 104 |
+
self.uid = uid
|
| 105 |
+
self.transcript = transcript if transcript else None
|
| 106 |
+
self.prev_utt = prev_utt
|
| 107 |
+
self.eliciting = None
|
| 108 |
+
self.question = None
|
| 109 |
+
self.starttime = starttime
|
| 110 |
+
self.endtime = endtime
|
| 111 |
+
|
| 112 |
+
def __setitem__(self, key, value):
|
| 113 |
+
self.__dict__[key] = value
|
| 114 |
+
|
| 115 |
+
def get_clean_text(self, remove_punct=False):
|
| 116 |
+
if remove_punct:
|
| 117 |
+
return clean_str_nopunct(self.text)
|
| 118 |
+
return clean_str(self.text)
|
| 119 |
+
|
| 120 |
+
def to_dict(self):
|
| 121 |
+
return {
|
| 122 |
+
'speaker': self.speaker,
|
| 123 |
+
'text': self.text,
|
| 124 |
+
'uid': self.uid,
|
| 125 |
+
'prev_utt': self.prev_utt,
|
| 126 |
+
'eliciting': self.eliciting,
|
| 127 |
+
'question': self.question,
|
| 128 |
+
'starttime': self.starttime,
|
| 129 |
+
'endtime': self.endtime,
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def __repr__(self):
|
| 134 |
+
return f"Utterance(speaker='{self.speaker}'," \
|
| 135 |
+
f"text='{self.text}', uid={self.uid}, prev_utt={self.prev_utt}, elicting={self.eliciting}, question={self.question}), starttime={self.starttime}, endtime={self.endtime})"
|
| 136 |
+
|
| 137 |
+
class ElicitingTranscript:
|
| 138 |
+
def __init__(self, utterances: List[ElicitingUtterance], tokenizer=None):
|
| 139 |
+
self.tokenizer = tokenizer
|
| 140 |
+
self.utterances = []
|
| 141 |
+
prev_utt = ""
|
| 142 |
+
prev_utt_teacher = ""
|
| 143 |
+
prev_speaker = None
|
| 144 |
+
for utterance in utterances:
|
| 145 |
+
try:
|
| 146 |
+
if 'student' in utterance["speaker"]:
|
| 147 |
+
utterance["speaker"] = 'student'
|
| 148 |
+
except:
|
| 149 |
+
continue
|
| 150 |
+
if (prev_speaker == 'tutor') and (utterance["speaker"] == 'student'):
|
| 151 |
+
utterance = ElicitingUtterance(**utterance, transcript=self, prev_utt=prev_utt.text)
|
| 152 |
+
elif (prev_speaker == 'student') and (utterance["speaker"] == 'tutor'):
|
| 153 |
+
utterance = ElicitingUtterance(**utterance, transcript=self, prev_utt=prev_utt.text)
|
| 154 |
+
prev_utt_teacher = utterance.text
|
| 155 |
+
elif (prev_speaker == 'student') and (utterance["speaker"] == 'student'):
|
| 156 |
+
try:
|
| 157 |
+
utterance = ElicitingUtterance(**utterance, transcript=self, prev_utt=prev_utt_teacher)
|
| 158 |
+
except:
|
| 159 |
+
print("Error on line 159 of handler.py")
|
| 160 |
+
print(utterance)
|
| 161 |
+
# breakpoint()
|
| 162 |
+
else:
|
| 163 |
+
utterance = ElicitingUtterance(**utterance, transcript=self, prev_utt="")
|
| 164 |
+
if utterance.speaker == 'tutor':
|
| 165 |
+
prev_utt_teacher = utterance.text
|
| 166 |
+
prev_utt = utterance
|
| 167 |
+
prev_speaker = utterance.speaker
|
| 168 |
+
self.utterances.append(utterance)
|
| 169 |
+
|
| 170 |
+
def __len__(self):
|
| 171 |
+
return len(self.utterances)
|
| 172 |
+
|
| 173 |
+
def __getitem__(self, index):
|
| 174 |
+
output = self.tokenizer([(self.utterances[index].prev_utt, self.utterances[index].text)], truncation=True)
|
| 175 |
+
output["speaker"] = self.utterances[index].speaker
|
| 176 |
+
output["uid"] = self.utterances[index].uid
|
| 177 |
+
output["prev_utt"] = self.utterances[index].prev_utt
|
| 178 |
+
output["text"] = self.utterances[index].text
|
| 179 |
+
return output
|
| 180 |
+
|
| 181 |
+
def to_dict(self):
|
| 182 |
+
return {
|
| 183 |
+
'utterances': [utterance.to_dict() for utterance in self.utterances]
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
class QuestionModel:
|
| 187 |
+
def __init__(self, device, tokenizer, input_builder, max_length=300, path=QUESTION_MODEL):
|
| 188 |
+
print("Loading models...")
|
| 189 |
+
self.device = device
|
| 190 |
+
self.tokenizer = tokenizer
|
| 191 |
+
self.input_builder = input_builder
|
| 192 |
+
self.max_length = max_length
|
| 193 |
+
self.model = MultiHeadModel.from_pretrained(path, head2size={"is_question": 2})
|
| 194 |
+
self.model.to(self.device)
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def run_inference(self, transcript):
|
| 198 |
+
self.model.eval()
|
| 199 |
+
with torch.no_grad():
|
| 200 |
+
for i, utt in enumerate(transcript.utterances):
|
| 201 |
+
if utt.text is None:
|
| 202 |
+
utt.question = None
|
| 203 |
+
continue
|
| 204 |
+
if "?" in utt.text:
|
| 205 |
+
utt.question = 1
|
| 206 |
+
else:
|
| 207 |
+
text = utt.get_clean_text(remove_punct=True)
|
| 208 |
+
instance = self.input_builder.build_inputs([], text,
|
| 209 |
+
max_length=self.max_length,
|
| 210 |
+
input_str=True)
|
| 211 |
+
output = self.get_prediction(instance)
|
| 212 |
+
utt.question = softmax(output["is_question_logits"][0].tolist())[1]
|
| 213 |
+
|
| 214 |
+
def get_prediction(self, instance):
|
| 215 |
+
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
|
| 216 |
+
for key in ["input_ids", "token_type_ids", "attention_mask"]:
|
| 217 |
+
instance[key] = torch.tensor(instance[key]).unsqueeze(0) # Batch size = 1
|
| 218 |
+
instance[key].to(self.device)
|
| 219 |
+
|
| 220 |
+
output = self.model(input_ids=instance["input_ids"].to(self.device),
|
| 221 |
+
attention_mask=instance["attention_mask"].to(self.device),
|
| 222 |
+
token_type_ids=instance["token_type_ids"].to(self.device),
|
| 223 |
+
return_pooler_output=False)
|
| 224 |
+
return output
|
| 225 |
+
|
| 226 |
+
class UptakeModel:
|
| 227 |
+
def __init__(self, device, tokenizer, input_builder, max_length=120, path=UPTAKE_MODEL):
|
| 228 |
+
print("Loading models...")
|
| 229 |
+
self.device = device
|
| 230 |
+
self.tokenizer = tokenizer
|
| 231 |
+
self.input_builder = input_builder
|
| 232 |
+
self.max_length = max_length
|
| 233 |
+
self.model = MultiHeadModel.from_pretrained(path, head2size={"nsp": 2})
|
| 234 |
+
self.model.to(self.device)
|
| 235 |
+
|
| 236 |
+
def run_inference(self, transcript, min_prev_words, uptake_speaker=None):
|
| 237 |
+
self.model.eval()
|
| 238 |
+
prev_num_words = 0
|
| 239 |
+
prev_utt = None
|
| 240 |
+
with torch.no_grad():
|
| 241 |
+
for i, utt in enumerate(transcript.utterances):
|
| 242 |
+
if ((uptake_speaker is None) or (utt.speaker == uptake_speaker)) and (prev_num_words >= min_prev_words):
|
| 243 |
+
textA = prev_utt.get_clean_text(remove_punct=False)
|
| 244 |
+
textB = utt.get_clean_text(remove_punct=False)
|
| 245 |
+
instance = self.input_builder.build_inputs([textA], textB,
|
| 246 |
+
max_length=self.max_length,
|
| 247 |
+
input_str=True)
|
| 248 |
+
output = self.get_prediction(instance)
|
| 249 |
+
|
| 250 |
+
utt.uptake = softmax(output["nsp_logits"][0].tolist())[1]
|
| 251 |
+
utt.prev_utt = prev_utt.text
|
| 252 |
+
prev_num_words = utt.get_num_words()
|
| 253 |
+
prev_utt = utt
|
| 254 |
+
|
| 255 |
+
def get_prediction(self, instance):
|
| 256 |
+
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
|
| 257 |
+
for key in ["input_ids", "token_type_ids", "attention_mask"]:
|
| 258 |
+
instance[key] = torch.tensor(instance[key]).unsqueeze(0) # Batch size = 1
|
| 259 |
+
instance[key].to(self.device)
|
| 260 |
+
|
| 261 |
+
output = self.model(input_ids=instance["input_ids"].to(self.device),
|
| 262 |
+
attention_mask=instance["attention_mask"].to(self.device),
|
| 263 |
+
token_type_ids=instance["token_type_ids"].to(self.device),
|
| 264 |
+
return_pooler_output=False)
|
| 265 |
+
return output
|
| 266 |
+
|
| 267 |
+
class ElicitingModel:
|
| 268 |
+
def __init__(self, device, tokenizer, path=ELICITING_MODEL):
|
| 269 |
+
print("Loading teacher models...")
|
| 270 |
+
self.device = device
|
| 271 |
+
self.tokenizer = tokenizer
|
| 272 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(path).to(self.device)
|
| 273 |
+
|
| 274 |
+
def run_inference(self, dataset):
|
| 275 |
+
current_batch = 0
|
| 276 |
+
batch_size = 64
|
| 277 |
+
|
| 278 |
+
def generator():
|
| 279 |
+
while current_batch < len(dataset):
|
| 280 |
+
yield
|
| 281 |
+
|
| 282 |
+
for _ in generator():
|
| 283 |
+
# check if the remaining samples are less than the batch size
|
| 284 |
+
if len(dataset) - current_batch < batch_size:
|
| 285 |
+
batch_size = len(dataset) - current_batch
|
| 286 |
+
|
| 287 |
+
to_pad = [{"input_ids": example["input_ids"][0], "attention_mask": example["attention_mask"][0]} for example in dataset]
|
| 288 |
+
to_pad = to_pad[current_batch:current_batch + batch_size]
|
| 289 |
+
batch = self.tokenizer.pad(
|
| 290 |
+
to_pad,
|
| 291 |
+
padding=True,
|
| 292 |
+
max_length=None,
|
| 293 |
+
pad_to_multiple_of=None,
|
| 294 |
+
return_tensors="pt",
|
| 295 |
+
)
|
| 296 |
+
inputs = batch["input_ids"].to(self.device)
|
| 297 |
+
attention_mask = batch["attention_mask"].to(self.device)
|
| 298 |
+
with torch.no_grad():
|
| 299 |
+
outputs = self.model(inputs, attention_mask=attention_mask)
|
| 300 |
+
predictions = outputs.logits.argmax(dim=-1).cpu().numpy()
|
| 301 |
+
|
| 302 |
+
for i, prediction in enumerate(predictions):
|
| 303 |
+
if dataset.utterances[current_batch + i].speaker == 'tutor':
|
| 304 |
+
dataset.utterances[current_batch + i]["eliciting"] = prediction
|
| 305 |
+
current_batch += batch_size
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
class EndpointHandler():
|
| 309 |
+
def __init__(self, path="."):
|
| 310 |
+
print("Loading models...")
|
| 311 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 312 |
+
|
| 313 |
+
self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
| 314 |
+
self.input_builder = BertInputBuilder(tokenizer=self.tokenizer)
|
| 315 |
+
self.uptake_model = UptakeModel(self.device, self.tokenizer, self.input_builder)
|
| 316 |
+
self.question_model = QuestionModel(self.device, self.tokenizer, self.input_builder)
|
| 317 |
+
self.eliciting_tokenizer = AutoTokenizer.from_pretrained(ELICITING_MODEL)
|
| 318 |
+
self.eliciting_model = ElicitingModel(self.device, self.tokenizer, path=ELICITING_MODEL)
|
| 319 |
+
|
| 320 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 321 |
+
"""
|
| 322 |
+
data args:
|
| 323 |
+
inputs (:obj: `list`):
|
| 324 |
+
List of dicts, where each dict represents an utterance; each utterance object must have a `speaker`,
|
| 325 |
+
`text` and `uid`and can include list of custom properties
|
| 326 |
+
parameters (:obj: `dict`)
|
| 327 |
+
Return:
|
| 328 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
| 329 |
+
"""
|
| 330 |
+
|
| 331 |
+
# get inputs
|
| 332 |
+
utterances = data.pop("inputs", data)
|
| 333 |
+
params = data.pop("parameters", None) #TODO: make sure that it includes everything required
|
| 334 |
+
|
| 335 |
+
print(params["session_uuid"])
|
| 336 |
+
|
| 337 |
+
# pre-processing
|
| 338 |
+
utterances = preprocess_raw_files(utterances, params)
|
| 339 |
+
|
| 340 |
+
# compute student engagement and talk time metrics
|
| 341 |
+
num_students_engaged, num_students_engaged_talk_only = compute_student_engagement(utterances)
|
| 342 |
+
tutor_talk_time = compute_talk_time(utterances)
|
| 343 |
+
|
| 344 |
+
#TODO: make sure there is some routing going on here based on what session we are at
|
| 345 |
+
if params["session_type"] == "eliciting":
|
| 346 |
+
# pre-processing for eliciting
|
| 347 |
+
utterances_elicting = preprocess_transcript_for_eliciting(utterances)
|
| 348 |
+
eliciting_transcript = ElicitingTranscript(utterances_elicting, tokenizer=self.tokenizer)
|
| 349 |
+
self.eliciting_model.run_inference(eliciting_transcript)
|
| 350 |
+
|
| 351 |
+
# Question
|
| 352 |
+
self.question_model.run_inference(eliciting_transcript)
|
| 353 |
+
|
| 354 |
+
transcript_output = eliciting_transcript
|
| 355 |
+
else:
|
| 356 |
+
uptake_transcript = UptakeTranscript(filename=params.pop("filename", None))
|
| 357 |
+
for utt in utterances:
|
| 358 |
+
uptake_transcript.add_utterance(UptakeUtterance(**utt))
|
| 359 |
+
|
| 360 |
+
# Uptake
|
| 361 |
+
self.uptake_model.run_inference(uptake_transcript, min_prev_words=params['uptake_min_num_words'],
|
| 362 |
+
uptake_speaker=params.pop("uptake_speaker", None))
|
| 363 |
+
|
| 364 |
+
# Question
|
| 365 |
+
self.question_model.run_inference(uptake_transcript)
|
| 366 |
+
transcript_output = uptake_transcript
|
| 367 |
+
|
| 368 |
+
# post-processing
|
| 369 |
+
model_outputs = post_processing_output_json(transcript_output.to_dict(), params["session_uuid"], params["session_type"])
|
| 370 |
+
|
| 371 |
+
final_output = {}
|
| 372 |
+
final_output["metrics"] = {"num_students_engaged": num_students_engaged,
|
| 373 |
+
"num_students_engaged_talk_only": num_students_engaged_talk_only,
|
| 374 |
+
"tutor_talk_time": tutor_talk_time}
|
| 375 |
+
|
| 376 |
+
if len(model_outputs) > 0:
|
| 377 |
+
model_outputs = gpt4_filtering_selection(model_outputs, params["session_type"], params["focus_concept"])
|
| 378 |
+
|
| 379 |
+
final_output["model_outputs"] = model_outputs
|
| 380 |
+
final_output["event_id"] = params["event_id"]
|
| 381 |
+
|
| 382 |
+
import requests
|
| 383 |
+
webhooks_url = 'https://schoolhouse.world/api/webhooks/stanford-ai-feedback-highlights'
|
| 384 |
+
response = requests.post(webhooks_url, json=final_output)
|
| 385 |
+
|
| 386 |
+
print("Post request sent, here is the response: ", response)
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
return final_output
|