File size: 1,773 Bytes
1758d90
970ddbc
1758d90
 
970ddbc
 
1758d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
970ddbc
1758d90
 
 
 
 
 
 
970ddbc
1758d90
970ddbc
1758d90
970ddbc
1758d90
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
---
language: ar
widget:
 - text: "قفا نبك من ذِكرى حبيب ومنزلِ  بسِقطِ اللِّوى بينَ الدَّخول فحَوْملِ"
 - text: "سَلو قَلبي غَداةَ سَلا وَثابا لَعَلَّ عَلى الجَمالِ لَهُ عِتابا"
datasets:
- Yah216/autotrain-data-Poem_meter_3
co2_eq_emissions: 404.66986451902227
---

# Model Trained Using AutoTrain

- Problem type: Multi-class Classification
- CO2 Emissions (in grams): 404.66986451902227

## Validation Metrics

- Loss: 0.21315555274486542
- Accuracy: 0.9493554089595999
- Macro F1: 0.7537353091512587
- Micro F1: 0.9493554089595999
- Weighted F1: 0.9480607076301577
- Macro Precision: 0.7925160467633223
- Micro Precision: 0.9493554089595999
- Weighted Precision: 0.9477713919153736
- Macro Recall: 0.7352339804511467
- Micro Recall: 0.9493554089595999
- Weighted Recall: 0.9493554089595999


## Usage

You can use cURL to access this model:

```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "قفا نبك من ذِكرى حبيب ومنزلِ  بسِقطِ اللِّوى بينَ الدَّخول فحَوْملِ"}' https://api-inference.huggingface.co/models/Yah216/Arabic_poem_meter_3
```

Or Python API:

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("Yah216/Arabic_poem_meter_3", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("Yah216/Arabic_poem_meter_3", use_auth_token=True)

inputs = tokenizer("قفا نبك من ذِكرى حبيب ومنزلِ  بسِقطِ اللِّوى بينَ الدَّخول فحَوْملِ", return_tensors="pt")

outputs = model(**inputs)
```