--- --- language: ar widget: - text: "قفا نبك من ذِكرى حبيب ومنزلِ بسِقطِ اللِّوى بينَ الدَّخول فحَوْملِ" - text: "سَلو قَلبي غَداةَ سَلا وَثابا لَعَلَّ عَلى الجَمالِ لَهُ عِتابا" datasets: - Yah216/autotrain-data-Poem_meter_3 co2_eq_emissions: 404.66986451902227 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - CO2 Emissions (in grams): 404.66986451902227 ## Validation Metrics - Loss: 0.21315555274486542 - Accuracy: 0.9493554089595999 - Macro F1: 0.7537353091512587 - Micro F1: 0.9493554089595999 - Weighted F1: 0.9480607076301577 - Macro Precision: 0.7925160467633223 - Micro Precision: 0.9493554089595999 - Weighted Precision: 0.9477713919153736 - Macro Recall: 0.7352339804511467 - Micro Recall: 0.9493554089595999 - Weighted Recall: 0.9493554089595999 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "قفا نبك من ذِكرى حبيب ومنزلِ بسِقطِ اللِّوى بينَ الدَّخول فحَوْملِ"}' https://api-inference.huggingface.co/models/Yah216/Arabic_poem_meter_3 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Yah216/Arabic_poem_meter_3", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Yah216/Arabic_poem_meter_3", use_auth_token=True) inputs = tokenizer("قفا نبك من ذِكرى حبيب ومنزلِ بسِقطِ اللِّوى بينَ الدَّخول فحَوْملِ", return_tensors="pt") outputs = model(**inputs) ```