File size: 3,319 Bytes
fd46991 ea4fd88 fd46991 ea4fd88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
language: en
tags:
- table-question-answering
datasets:
- wikisql
---
# ReasTAP
ReasTAP is a table reasoning model proposed in the EMNLP 2022 paper [ReasTAP: Injecting Table Reasoning Skills During Pre-training via Synthetic Reasoning Examples](https://arxiv.org/pdf/2210.12374.pdf). The original Github repository is [https://github.com/Yale-LILY/ReasTAP](https://github.com/Yale-LILY/ReasTAP).
## Description
`Yale-LILY/reastap-large-finetuned-wikisql` is initialized with `Yale-LILY/reastap-large` and finetuned on [WikiSQL](https://huggingface.co/datasets/wikisql).
## Usage
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import pandas as pd
tokenizer = AutoTokenizer.from_pretrained("Yale-LILY/reastap-large-finetuned-wikisql")
model = AutoModelForSeq2SeqLM.from_pretrained("Yale-LILY/reastap-large-finetuned-wikisql")
data = {
"year": [1896, 1900, 1904, 2004, 2008, 2012],
"city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
}
table = pd.DataFrame.from_dict(data)
query = "In which year did beijing host the Olympic Games?"
encoding = tokenizer(table=table, query=query, return_tensors="pt")
outputs = model.generate(**encoding)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
# [' 2008']
```
## Reference
```bibtex
@inproceedings{zhao-etal-2022-reastap,
title = "{R}eas{TAP}: Injecting Table Reasoning Skills During Pre-training via Synthetic Reasoning Examples",
author = "Zhao, Yilun and
Nan, Linyong and
Qi, Zhenting and
Zhang, Rui and
Radev, Dragomir",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.615",
pages = "9006--9018",
abstract = "Reasoning over tabular data requires both table structure understanding and a broad set of table reasoning skills. Current models with table-specific architectures and pre-training methods perform well on understanding table structures, but they still struggle with tasks that require various table reasoning skills. In this work, we develop ReasTAP to show that high-level table reasoning skills can be injected into models during pre-training without a complex table-specific architecture design. We define 7 table reasoning skills, such as numerical operation, temporal comparison, and conjunction. Each reasoning skill is associated with one example generator, which synthesizes questions over semi-structured tables according to the sampled templates. We model the table pre-training task as a sequence generation task and pre-train ReasTAP to generate precise answers of the synthetic examples. ReasTAP is evaluated on four benchmarks covering three downstream tasks including 1) WikiSQL-Weak and WikiTQ for Table Question Answering, 2) TabFact for Table Fact Verification, and 3) LogicNLG for Faithful Table-to-Text Generation. Experimental results demonstrate that ReasTAP achieves new state-of-the-art results on all of them and delivers a significant improvement under low-resource setting. Our code is publicly available at https://github.com/Yale-LILY/ReasTAP.",
}
``` |