Model save
Browse files- README.md +54 -18
- adapter_model.safetensors +1 -1
README.md
CHANGED
@@ -18,21 +18,21 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on the None dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.
|
22 |
-
- Balanced Accuracy: 0.
|
23 |
-
- Accuracy: 0.
|
24 |
-
- F1-score: 0.
|
25 |
- Classification-report: precision recall f1-score support
|
26 |
|
27 |
-
0 1.00 0.
|
28 |
1 1.00 1.00 1.00 50
|
29 |
-
2
|
30 |
3 1.00 1.00 1.00 50
|
31 |
-
4 0.
|
32 |
|
33 |
-
accuracy 0.
|
34 |
-
macro avg 0.
|
35 |
-
weighted avg 0.
|
36 |
|
37 |
|
38 |
## Model description
|
@@ -58,30 +58,66 @@ The following hyperparameters were used during training:
|
|
58 |
- seed: 42
|
59 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
60 |
- lr_scheduler_type: linear
|
61 |
-
- num_epochs:
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Balanced Accuracy | Accuracy | F1-score | Classification-report |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------:|:--------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
67 |
-
| 0.
|
68 |
|
69 |
-
0 1.00 0.
|
70 |
1 1.00 1.00 1.00 50
|
71 |
-
2
|
72 |
3 1.00 1.00 1.00 50
|
73 |
4 0.94 1.00 0.97 50
|
74 |
|
75 |
-
accuracy 0.
|
76 |
-
macro avg 0.
|
77 |
-
weighted avg 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
|
79 |
|
80 |
|
81 |
### Framework versions
|
82 |
|
83 |
- PEFT 0.13.2
|
84 |
-
- Transformers 4.
|
85 |
- Pytorch 2.4.1+cu121
|
86 |
- Datasets 3.0.2
|
87 |
- Tokenizers 0.20.1
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on the None dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.0205
|
22 |
+
- Balanced Accuracy: 0.992
|
23 |
+
- Accuracy: 0.992
|
24 |
+
- F1-score: 0.9920
|
25 |
- Classification-report: precision recall f1-score support
|
26 |
|
27 |
+
0 1.00 0.96 0.98 50
|
28 |
1 1.00 1.00 1.00 50
|
29 |
+
2 1.00 1.00 1.00 50
|
30 |
3 1.00 1.00 1.00 50
|
31 |
+
4 0.96 1.00 0.98 50
|
32 |
|
33 |
+
accuracy 0.99 250
|
34 |
+
macro avg 0.99 0.99 0.99 250
|
35 |
+
weighted avg 0.99 0.99 0.99 250
|
36 |
|
37 |
|
38 |
## Model description
|
|
|
58 |
- seed: 42
|
59 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
60 |
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 4
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Balanced Accuracy | Accuracy | F1-score | Classification-report |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------:|:--------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
67 |
+
| 0.0 | 1.0 | 157 | 0.0405 | 0.9880 | 0.988 | 0.9880 | precision recall f1-score support
|
68 |
|
69 |
+
0 1.00 0.94 0.97 50
|
70 |
1 1.00 1.00 1.00 50
|
71 |
+
2 1.00 1.00 1.00 50
|
72 |
3 1.00 1.00 1.00 50
|
73 |
4 0.94 1.00 0.97 50
|
74 |
|
75 |
+
accuracy 0.99 250
|
76 |
+
macro avg 0.99 0.99 0.99 250
|
77 |
+
weighted avg 0.99 0.99 0.99 250
|
78 |
+
|
|
79 |
+
| 0.0 | 2.0 | 314 | 0.0300 | 0.9880 | 0.988 | 0.9880 | precision recall f1-score support
|
80 |
+
|
81 |
+
0 1.00 0.94 0.97 50
|
82 |
+
1 1.00 1.00 1.00 50
|
83 |
+
2 1.00 1.00 1.00 50
|
84 |
+
3 1.00 1.00 1.00 50
|
85 |
+
4 0.94 1.00 0.97 50
|
86 |
+
|
87 |
+
accuracy 0.99 250
|
88 |
+
macro avg 0.99 0.99 0.99 250
|
89 |
+
weighted avg 0.99 0.99 0.99 250
|
90 |
+
|
|
91 |
+
| 0.0 | 3.0 | 471 | 0.0177 | 0.992 | 0.992 | 0.9920 | precision recall f1-score support
|
92 |
+
|
93 |
+
0 1.00 0.96 0.98 50
|
94 |
+
1 1.00 1.00 1.00 50
|
95 |
+
2 1.00 1.00 1.00 50
|
96 |
+
3 1.00 1.00 1.00 50
|
97 |
+
4 0.96 1.00 0.98 50
|
98 |
+
|
99 |
+
accuracy 0.99 250
|
100 |
+
macro avg 0.99 0.99 0.99 250
|
101 |
+
weighted avg 0.99 0.99 0.99 250
|
102 |
+
|
|
103 |
+
| 0.0 | 4.0 | 628 | 0.0205 | 0.992 | 0.992 | 0.9920 | precision recall f1-score support
|
104 |
+
|
105 |
+
0 1.00 0.96 0.98 50
|
106 |
+
1 1.00 1.00 1.00 50
|
107 |
+
2 1.00 1.00 1.00 50
|
108 |
+
3 1.00 1.00 1.00 50
|
109 |
+
4 0.96 1.00 0.98 50
|
110 |
+
|
111 |
+
accuracy 0.99 250
|
112 |
+
macro avg 0.99 0.99 0.99 250
|
113 |
+
weighted avg 0.99 0.99 0.99 250
|
114 |
|
|
115 |
|
116 |
|
117 |
### Framework versions
|
118 |
|
119 |
- PEFT 0.13.2
|
120 |
+
- Transformers 4.46.0
|
121 |
- Pytorch 2.4.1+cu121
|
122 |
- Datasets 3.0.2
|
123 |
- Tokenizers 0.20.1
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 13689552
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:720c66677c54ed387c184389ac32ba2862fff1ec1f83a88cac2eaed80561fceb
|
3 |
size 13689552
|