Model save
Browse files- README.md +87 -0
- tokenizer.json +2 -2
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: meta-llama/Llama-3.2-1B
|
3 |
+
library_name: peft
|
4 |
+
license: llama3.2
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
tags:
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: llama3.2-finetuned-newsclassify
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# llama3.2-finetuned-newsclassify
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.0941
|
22 |
+
- Balanced Accuracy: 0.984
|
23 |
+
- Accuracy: 0.984
|
24 |
+
- F1-score: 0.9839
|
25 |
+
- Classification-report: precision recall f1-score support
|
26 |
+
|
27 |
+
0 1.00 0.92 0.96 50
|
28 |
+
1 1.00 1.00 1.00 50
|
29 |
+
2 0.98 1.00 0.99 50
|
30 |
+
3 1.00 1.00 1.00 50
|
31 |
+
4 0.94 1.00 0.97 50
|
32 |
+
|
33 |
+
accuracy 0.98 250
|
34 |
+
macro avg 0.98 0.98 0.98 250
|
35 |
+
weighted avg 0.98 0.98 0.98 250
|
36 |
+
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.0001
|
56 |
+
- train_batch_size: 8
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 1
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Balanced Accuracy | Accuracy | F1-score | Classification-report |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------:|:--------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
67 |
+
| 0.001 | 1.0 | 157 | 0.0941 | 0.984 | 0.984 | 0.9839 | precision recall f1-score support
|
68 |
+
|
69 |
+
0 1.00 0.92 0.96 50
|
70 |
+
1 1.00 1.00 1.00 50
|
71 |
+
2 0.98 1.00 0.99 50
|
72 |
+
3 1.00 1.00 1.00 50
|
73 |
+
4 0.94 1.00 0.97 50
|
74 |
+
|
75 |
+
accuracy 0.98 250
|
76 |
+
macro avg 0.98 0.98 0.98 250
|
77 |
+
weighted avg 0.98 0.98 0.98 250
|
78 |
+
|
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- PEFT 0.13.2
|
84 |
+
- Transformers 4.47.0.dev0
|
85 |
+
- Pytorch 2.4.1+cu121
|
86 |
+
- Datasets 3.0.2
|
87 |
+
- Tokenizers 0.20.1
|
tokenizer.json
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8455cd05329f9cb9895e200605934b714e7fc55873b9969c77d1c3c01ccc60e0
|
3 |
+
size 17210188
|