File size: 13,753 Bytes
bc9510d
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x790aac9cba30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x790aac9cbac0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x790aac9cbb50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x790aac9cbbe0>", "_build": "<function ActorCriticPolicy._build at 0x790aac9cbc70>", "forward": "<function ActorCriticPolicy.forward at 0x790aac9cbd00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x790aac9cbd90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x790aac9cbe20>", "_predict": "<function ActorCriticPolicy._predict at 0x790aac9cbeb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x790aac9cbf40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x790aac9d0040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x790aac9d00d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x790aac9be7c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690275766096356320, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAID+fj1IwYC67qymOhpZQzWzVek6/WDBuQAAgD8AAIA/jQ05vkiKUj/e5dU93PNgvjlVXL1HoIA9AAAAAAAAAABm9pW8FBCUumY2OTgTR0y1M9VLuhsBOLQAAIA/AACAP5oBtT2zvG0/q72PvE+RX75aGw09qkB1uwAAAAAAAAAATVFMPY+Ccrpyfl+7qcBVNqAkC7uGh4E6AACAPwAAgD8AcGO87OC0u/95gjya15k8eaEJPTALgr0AAIA/AACAPxpBCb1bIL0+44iwPYZ7YL59I7c902wlPQAAAAAAAAAAAPGiPMOZFLrj8pM7orjGNYTYFjpsKqi6AACAPwAAgD/A6Lg99mxjurxRurp5P5K2J7dFut6cBjYAAIA/AACAP0AzhT2uH4i6oQmhOwUFBjgzxhI7zZNSNQAAgD8AAIA/AB0FPmRvRT/isug9gu5Svg5A5z3ajPQ8AAAAAAAAAABz9/09KdwSOW1fI7qzIAE1VIxAPPmCSTkAAIA/AACAP6ZTEj6E848+AP7muxBRI76piZI8BqwjvQAAAAAAAAAAZpSAPCmAXboos1277nmetvhGgjqFlRE2AACAPwAAgD8Acc09j6YDuoJtYjszPmQ4PMiFuUU8DLoAAIA/AACAPzN49T0j+Xg/mB8hvEKTTr5/4q67kqEMvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG29XvYvnKaMAWyUTX4CjAF0lEdAkjJfRzBAOnV9lChoBkdAYPdf+CK77WgHTegDaAhHQJI2geii7Cl1fZQoaAZHQF2miY9gWrRoB03oA2gIR0CSOBWd3B55dX2UKGgGR0BaiNNFjNILaAdN6ANoCEdAkj/OE25xznV9lChoBkdAYhTLkjopx2gHTegDaAhHQJJGk82aUiZ1fZQoaAZHQCf9qWTot+VoB0vjaAhHQJJI/zshPj51fZQoaAZHQGKxRgiNbTtoB03oA2gIR0CSSTUtI066dX2UKGgGR0A7RbZezD4yaAdNEwFoCEdAkkrg75mAb3V9lChoBkdAOG3jENvwVmgHS/5oCEdAklJKrR0EHXV9lChoBkdAYGc176YVqWgHTegDaAhHQJJXKk56t1Z1fZQoaAZHQFwooOx0MgFoB03oA2gIR0CSWFlHBk7PdX2UKGgGR0A9sRtxdY4iaAdNAAFoCEdAkli9PUKArnV9lChoBkdAZPn8LKFIu2gHTegDaAhHQJJr9cbBGhF1fZQoaAZHQGHIZG8VYZFoB03oA2gIR0CSbBbxmTTwdX2UKGgGR0BCDb5dnkDIaAdNDAFoCEdAkmwbZvkzXXV9lChoBkdAYzwxjawljWgHTegDaAhHQJJ1T5O8Cgd1fZQoaAZHQGINyOinHedoB03oA2gIR0CSdt593KSxdX2UKGgGR0Bbb1UyYXwcaAdN6ANoCEdAkneRvR7Z4HV9lChoBkdAOq4SteUpu2gHTQkBaAhHQJJ36afBeol1fZQoaAZHQGHUxigCfYloB03oA2gIR0CSekqNIbwSdX2UKGgGR0Bg/DNliBoVaAdN6ANoCEdAkoNV3Ux20XV9lChoBkdARIkJWvKU3WgHS+JoCEdAkoP3W4EwFnV9lChoBkdAYPu/pt78emgHTegDaAhHQJKEGw2VE/l1fZQoaAZHQGVWDIBBAwBoB03oA2gIR0CShu00m+j/dX2UKGgGR0A1cS/CZWq+aAdL/GgIR0CShzGnGbTddX2UKGgGR0Bsgzl5nlGPaAdNIgFoCEdAkpkiILw4KnV9lChoBkdAZSdCKJl8PWgHTegDaAhHQJKef3SKFZh1fZQoaAZHQFzBwGW2PT5oB03oA2gIR0CSoHahHskZdX2UKGgGR0BceqmXPZ7HaAdN6ANoCEdAkqk15a/yoXV9lChoBkfAODgswtapxWgHS/loCEdAkq3McZLqU3V9lChoBkdAW+9G0/nnuGgHTegDaAhHQJKwBghKUV11fZQoaAZHQGUJZ1Ng0CRoB03oA2gIR0CSsIC04R29dX2UKGgGR0BiD4sunMt9aAdN6ANoCEdAkrO5Bsyi23V9lChoBkdAYJg54nndPGgHTegDaAhHQJKz38jzI3l1fZQoaAZHQGSPKebutwJoB03oA2gIR0CSs+V4oqkNdX2UKGgGR0BgL80P6KtQaAdN6ANoCEdAktG5gw482nV9lChoBkdAZOlXg9/z8WgHTegDaAhHQJLSJttQ9A51fZQoaAZHQGKEeqR2bG5oB03oA2gIR0CS1Mi0OVgQdX2UKGgGR0BmTWU4aP0aaAdN6ANoCEdAkt2nFo+OfnV9lChoBkdAYWBp7kXDWWgHTegDaAhHQJLeZIoVmBh1fZQoaAZHQGAtDAaef7JoB03oA2gIR0CS4SyPMjeLdX2UKGgGR0Bh6NzMibDuaAdN6ANoCEdAkuFu1fE4vXV9lChoBkdAY1Fyvs7dSGgHTegDaAhHQJL2pBD5TIh1fZQoaAZHQGJYgkTpPh1oB03oA2gIR0CS+JDNQj2SdX2UKGgGR0BgXKUkfLcLaAdN6ANoCEdAkwCiBTXJ5nV9lChoBkdAYhWxj8UEgWgHTegDaAhHQJME+kWRA8l1fZQoaAZHQGV61jZteldoB03oA2gIR0CTBwiYb83udX2UKGgGR0BhlUwDeTFEaAdN6ANoCEdAkwd3ZsbednV9lChoBkdAYtx1RLsa9GgHTegDaAhHQJMKZ62OQyR1fZQoaAZHQGZI2u5jH4poB03oA2gIR0CTColgc94edX2UKGgGR0BjmTBbfP5YaAdN6ANoCEdAkwqOANG3F3V9lChoBkdAYySXDWK/EmgHTegDaAhHQJMnHeCTUy51fZQoaAZHQGOwY33pOetoB03oA2gIR0CTJ4RGMGX5dX2UKGgGR0Bf4MxTKkmAaAdN6ANoCEdAkyopuhsZYXV9lChoBkdAQSyEWZZ0S2gHTSkBaAhHQJMrHx6OYIB1fZQoaAZHQGJTK//NqxloB03oA2gIR0CTM1J2t+1CdX2UKGgGR0Bgv3dyksSTaAdN6ANoCEdAkzQXxSYPXnV9lChoBkdAXrI1xbSql2gHTegDaAhHQJM3EizLOiZ1fZQoaAZHQGCKneaa1CxoB03oA2gIR0CTN1hMrVe8dX2UKGgGR0BjifaL4vexaAdN6ANoCEdAk0zjjzZpSXV9lChoBkdAYtjIClrM1WgHTegDaAhHQJNOzDIikft1fZQoaAZHQGPaWilBQepoB03oA2gIR0CTVu9FWn0kdX2UKGgGR0BhrEALiMo+aAdN6ANoCEdAk1sqdH2AXnV9lChoBkdAYeQeSSvC/GgHTegDaAhHQJNdQcZLqUx1fZQoaAZHQGJsIm5UcXFoB03oA2gIR0CTYLCl7+kydX2UKGgGR0BhQgi5d4VzaAdN6ANoCEdAk2DUwBYFJXV9lChoBkdAYLtDZ13dK2gHTegDaAhHQJNg20KJEYx1fZQoaAZHQGDZpF1B+nZoB03oA2gIR0CTfrB7eEZjdX2UKGgGR0BiEKD0163RaAdN6ANoCEdAk38fWlMyrXV9lChoBkdAZU/solUp/mgHTegDaAhHQJOCDQZ4wAV1fZQoaAZHQGO1N52Qnx9oB03oA2gIR0CTgx7e2uxKdX2UKGgGR0Bg4N3B55Z9aAdN6ANoCEdAk4uHvc8DCHV9lChoBkdAXVNcVxjriWgHTegDaAhHQJOMTPJJXhh1fZQoaAZHQF9eY/mknCxoB03oA2gIR0CTj0houf29dX2UKGgGR0BgfpqmCROlaAdN6ANoCEdAk4+M72criHV9lChoBkdAQJ8neBQN1GgHTSIBaAhHQJOgJLDhtLt1fZQoaAZHQGQ208vEjxFoB03oA2gIR0CTpMQ79ycTdX2UKGgGR0Bf6ylnAZbZaAdN6ANoCEdAk6aOwC8vmHV9lChoBkdAYBeOdXko4WgHTegDaAhHQJOuVB7eEZl1fZQoaAZHQGVxYb83uNRoB03oA2gIR0CTsojL0SRKdX2UKGgGR0BcY9yo4uK5aAdN6ANoCEdAk7SRTXJ5mnV9lChoBkdAZVPA1Nxlx2gHTegDaAhHQJO4CYrrgO11fZQoaAZHQGGqY0uUUwloB03oA2gIR0CTuDYRNATqdX2UKGgGR0BkosI/qxC6aAdN6ANoCEdAk7g6KHfuTnV9lChoBkdAZTxph4MWoGgHTegDaAhHQJPUwwHqu8t1fZQoaAZHQGJH5dGAkLRoB03oA2gIR0CT1ScuanaWdX2UKGgGR0BnXmsDGLk0aAdN6ANoCEdAk9eOgUUO/nV9lChoBkdAZDHHDJlrdmgHTegDaAhHQJPYcH2RJVd1fZQoaAZHQF+JCUornT1oB03oA2gIR0CT383PiT+vdX2UKGgGR0Bj4E0WM0gsaAdN6ANoCEdAk+MxVp9JBnV9lChoBkdAZTWP/aQFLWgHTegDaAhHQJPjcwXZXdV1fZQoaAZHQGLx0aIeo1loB03oA2gIR0CT8/YYixFBdX2UKGgGR0BneppFkQPJaAdN6ANoCEdAk/ixeb/ff3V9lChoBkdAYQFXjENvwWgHTegDaAhHQJP6fXUYsNF1fZQoaAZHQGe7XXAdn01oB03oA2gIR0CUAg02tMfzdX2UKGgGR0BlWKqjrRjSaAdN6ANoCEdAlAYTKgZjx3V9lChoBkdAYCwiSq2jPGgHTegDaAhHQJQH+r92ovV1fZQoaAZHQFqX8O09hZ1oB03oA2gIR0CUCzozeoDQdX2UKGgGR0BimIHmig01aAdN6ANoCEdAlAtdQj2SMnV9lChoBkdAYn8+2VmjCmgHTegDaAhHQJQLYug6EJ11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}