--- language: - ht tags: - audio - automatic-speech-recognition license: mit library_name: ctranslate2 --- # Whisper small model for CTranslate2 This repository contains the conversion of [YassineKader/whisper-small-haitian](https://huggingface.co/YassineKader/whisper-small-haitian) to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format. This model can be used in CTranslate2 or projects based on CTranslate2 such as [faster-whisper](https://github.com/guillaumekln/faster-whisper). ## Example ```git #clone the repo git clone https://huggingface.co/YassineKader/faster-whisper-small-haitian ``` ```python import ctranslate2 import librosa import transformers from datetime import datetime # Load and resample the audio file. audio, _ = librosa.load("audio1.wav", sr=16000, mono=True) # Compute the features of the first 30 seconds of audio. processor = transformers.WhisperProcessor.from_pretrained("YassineKader/whisper-small-haitian") inputs = processor(audio, return_tensors="np", sampling_rate=16000) features = ctranslate2.StorageView.from_array(inputs.input_features) # Load the model on CPU. model = ctranslate2.models.Whisper("faster-whisper-small-haitian") # Detect the language. results = model.detect_language(features) language, probability = results[0][0] print("Detected language %s with probability %f" % (language, probability)) print(datetime.now()) # Describe the task in the prompt. # See the prompt format in https://github.com/openai/whisper. prompt = processor.tokenizer.convert_tokens_to_ids( [ "<|startoftranscript|>", language, "<|transcribe|>", "<|notimestamps|>", # Remove this token to generate timestamps. ] ) # Run generation for the 30-second window. results = model.generate(features, [prompt]) transcription = processor.decode(results[0].sequences_ids[0]) print(datetime.now()) print(transcription) ``` ## Conversion details The original model was converted with the following command: ``` ct2-transformers-converter --model YassineKader/whisper-small-haitian --output_dir faster-whisper-small-ht --copy_files tokenizer.json --quantization float32 ``` Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the [`compute_type` option in CTranslate2](https://opennmt.net/CTranslate2/quantization.html). ## More information **For more information about the original model, see its [model card](https://huggingface.co/openai/whisper-small).**