|
import csv |
|
|
|
import torch |
|
import torchaudio |
|
import numpy as np |
|
import evaluate |
|
|
|
from transformers import HubertForCTC, Wav2Vec2Processor |
|
|
|
batch_size = 8 |
|
device = "cuda:0" |
|
torch_dtype = torch.float16 |
|
sampling_rate = 16_000 |
|
|
|
model_name = "/home/yehor/ext-ml-disk/asr/hubert-training/models/final-85500" |
|
testset_file = "/home/yehor/ext-ml-disk/asr/w2v2-bert-training/eval/rows_no_defis.csv" |
|
|
|
|
|
with open(testset_file) as f: |
|
samples = list(csv.DictReader(f)) |
|
|
|
|
|
asr_model = HubertForCTC.from_pretrained( |
|
model_name, |
|
device_map=device, |
|
torch_dtype=torch_dtype, |
|
|
|
) |
|
processor = Wav2Vec2Processor.from_pretrained(model_name) |
|
|
|
|
|
|
|
def make_batches(iterable, n=1): |
|
lx = len(iterable) |
|
for ndx in range(0, lx, n): |
|
yield iterable[ndx : min(ndx + n, lx)] |
|
|
|
|
|
|
|
predictions_all = [] |
|
references_all = [] |
|
|
|
|
|
for batch in make_batches(samples, batch_size): |
|
paths = [it["path"] for it in batch] |
|
references = [it["text"] for it in batch] |
|
|
|
|
|
audio_inputs = [] |
|
for path in paths: |
|
audio_input, sampling_rate = torchaudio.load(path, backend="sox") |
|
audio_input = audio_input.squeeze(0).numpy() |
|
|
|
audio_inputs.append(audio_input) |
|
|
|
|
|
inputs = processor(audio_inputs, sampling_rate=16_000, padding=True).input_values |
|
|
|
features = torch.tensor(np.array(inputs), dtype=torch_dtype).to(device) |
|
|
|
with torch.inference_mode(): |
|
logits = asr_model(features).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
predictions = processor.batch_decode(predicted_ids) |
|
|
|
|
|
print("---") |
|
print("Predictions:") |
|
print(predictions) |
|
print("References:") |
|
print(references) |
|
print("---") |
|
|
|
|
|
predictions_all.extend(predictions) |
|
references_all.extend(references) |
|
|
|
|
|
wer = evaluate.load("wer") |
|
cer = evaluate.load("cer") |
|
|
|
|
|
wer_value = round( |
|
wer.compute(predictions=predictions_all, references=references_all), 4 |
|
) |
|
cer_value = round( |
|
cer.compute(predictions=predictions_all, references=references_all), 4 |
|
) |
|
|
|
|
|
print("Final:") |
|
print(f"WER: {wer_value} | CER: {cer_value}") |
|
|