import csv import torch import torchaudio import numpy as np import evaluate from transformers import HubertForCTC, Wav2Vec2Processor batch_size = 1 device = "cuda:0" # cuda:0, or cpu torch_dtype = torch.float16 sampling_rate = 16_000 model_name = "Yehor/mHuBERT-147-uk" testset_file = "examples.csv" # Load the test dataset with open(testset_file) as f: samples = list(csv.DictReader(f)) # Load the model asr_model = HubertForCTC.from_pretrained( model_name, device_map=device, torch_dtype=torch_dtype, # attn_implementation="flash_attention_2", ) processor = Wav2Vec2Processor.from_pretrained(model_name) # A util function to make batches def make_batches(iterable, n=1): lx = len(iterable) for ndx in range(0, lx, n): yield iterable[ndx : min(ndx + n, lx)] # Temporary variables predictions_all = [] references_all = [] # Inference in the batched mode for batch in make_batches(samples, batch_size): paths = [it["path"] for it in batch] references = [it["text"] for it in batch] # Extract audio audio_inputs = [] for path in paths: audio_input, sampling_rate = torchaudio.load(path, backend="sox") audio_input = audio_input.squeeze(0).numpy() audio_inputs.append(audio_input) # Transcribe the audio inputs = processor(audio_inputs, sampling_rate=16_000, padding=True).input_values features = torch.tensor(np.array(inputs), dtype=torch_dtype).to(device) with torch.inference_mode(): logits = asr_model(features).logits predicted_ids = torch.argmax(logits, dim=-1) predictions = processor.batch_decode(predicted_ids) # Log outputs print("---") print("Predictions:") print(predictions) print("References:") print(references) print("---") # Add predictions and references predictions_all.extend(predictions) references_all.extend(references) # Load evaluators wer = evaluate.load("wer") cer = evaluate.load("cer") # Evaluate wer_value = round( wer.compute(predictions=predictions_all, references=references_all), 4 ) cer_value = round( cer.compute(predictions=predictions_all, references=references_all), 4 ) # Print results print("Final:") print(f"WER: {wer_value} | CER: {cer_value}")