Create run_model_soups.py
Browse files- run_model_soups.py +111 -0
run_model_soups.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import logging
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import List, Dict, Tuple
|
6 |
+
from datasets import load_dataset
|
7 |
+
from greedy_search import find_best_combination
|
8 |
+
from cases_collect import valid_results_collect
|
9 |
+
|
10 |
+
def setup_logger() -> logging.Logger:
|
11 |
+
"""Configure and return logger."""
|
12 |
+
logging.basicConfig(
|
13 |
+
level=logging.INFO,
|
14 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
15 |
+
)
|
16 |
+
return logging.getLogger(__name__)
|
17 |
+
|
18 |
+
def get_model_paths(model_names: List[str], base_path: str = './') -> List[str]:
|
19 |
+
"""Generate model paths from names."""
|
20 |
+
return [os.path.join(base_path, f"{name}_model") for name in model_names]
|
21 |
+
|
22 |
+
def load_test_data(dataset_name: str = 'hippocrates/MedNLI_test') -> List[Dict]:
|
23 |
+
"""Load and prepare test dataset."""
|
24 |
+
dataset = load_dataset(dataset_name)
|
25 |
+
return [
|
26 |
+
{'Input': item['query'], 'Output': item['answer']}
|
27 |
+
for item in dataset['test']
|
28 |
+
]
|
29 |
+
|
30 |
+
def calculate_accuracy(correct: List, failed: List) -> float:
|
31 |
+
"""Calculate accuracy from correct and failed cases."""
|
32 |
+
total = len(correct) + len(failed)
|
33 |
+
return len(correct) / total if total > 0 else 0.0
|
34 |
+
|
35 |
+
def main():
|
36 |
+
"""Main execution function."""
|
37 |
+
logger = setup_logger()
|
38 |
+
|
39 |
+
try:
|
40 |
+
# Configuration
|
41 |
+
config = {
|
42 |
+
'search_name': 'randoms_model',
|
43 |
+
'model_names': ['randoms_data_3k_model'],
|
44 |
+
'base_path': './',
|
45 |
+
'valid_data_path': 'nli_demo.pt',
|
46 |
+
'seed': True,
|
47 |
+
'iteration': 5
|
48 |
+
}
|
49 |
+
|
50 |
+
# Generate model paths
|
51 |
+
model_paths = get_model_paths(config['model_names'], config['base_path'])
|
52 |
+
logger.info(f"Generated model paths: {model_paths}")
|
53 |
+
|
54 |
+
# Load datasets
|
55 |
+
logger.info("Loading test data...")
|
56 |
+
test_examples = load_test_data()
|
57 |
+
logger.info(f"Loaded {len(test_examples)} test examples")
|
58 |
+
|
59 |
+
logger.info("Loading validation data...")
|
60 |
+
try:
|
61 |
+
valid_data = torch.load(config['valid_data_path'])
|
62 |
+
logger.info(f"Loaded validation data from {config['valid_data_path']}")
|
63 |
+
except Exception as e:
|
64 |
+
logger.error(f"Failed to load validation data: {str(e)}")
|
65 |
+
raise
|
66 |
+
|
67 |
+
# Find best combination
|
68 |
+
logger.info("Finding best model combination...")
|
69 |
+
best_path, update_scores = find_best_combination(
|
70 |
+
model_paths,
|
71 |
+
valid_data,
|
72 |
+
valid_data,
|
73 |
+
config['search_name'],
|
74 |
+
iteration=config['iteration'],
|
75 |
+
seed=config['seed']
|
76 |
+
)
|
77 |
+
logger.info(f"Best path found with scores: {update_scores}")
|
78 |
+
|
79 |
+
# Evaluate on test set
|
80 |
+
logger.info("Evaluating on test set...")
|
81 |
+
failed_test, correct_test = valid_results_collect(
|
82 |
+
best_path,
|
83 |
+
test_examples,
|
84 |
+
'nli'
|
85 |
+
)
|
86 |
+
|
87 |
+
# Calculate and log accuracy
|
88 |
+
accuracy = calculate_accuracy(correct_test, failed_test)
|
89 |
+
logger.info(f"Test Accuracy: {accuracy:.4f}")
|
90 |
+
|
91 |
+
# Save results
|
92 |
+
results = {
|
93 |
+
'best_path': best_path,
|
94 |
+
'update_scores': update_scores,
|
95 |
+
'test_accuracy': accuracy,
|
96 |
+
'test_results': {
|
97 |
+
'correct': len(correct_test),
|
98 |
+
'failed': len(failed_test)
|
99 |
+
}
|
100 |
+
}
|
101 |
+
|
102 |
+
save_path = Path(f"results_{config['search_name']}.pt")
|
103 |
+
torch.save(results, save_path)
|
104 |
+
logger.info(f"Results saved to {save_path}")
|
105 |
+
|
106 |
+
except Exception as e:
|
107 |
+
logger.error(f"Error in main execution: {str(e)}", exc_info=True)
|
108 |
+
raise
|
109 |
+
|
110 |
+
if __name__ == "__main__":
|
111 |
+
main()
|