Yohhei commited on
Commit
7bc5c65
1 Parent(s): f4643ec

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,811 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:6300
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: The two patent families both expire in the United States in 2029.
35
+ sentences:
36
+ - What method is used to record amortization and costs for owned content that is
37
+ predominantly monetized on an individual basis?
38
+ - What year do the patent families related to DARZALEX expire in the United States?
39
+ - What was the primary reason for the net cash used in investing activities in 2022?
40
+ - source_sentence: In October 2020, Fortis Advisors LLC filed a complaint against
41
+ Ethicon Inc. and others in Delaware's Court of Chancery. The lawsuit alleges breach
42
+ of contract and fraud related to Ethicon's acquisition of Auris Health Inc. in
43
+ 2019. The case underwent a partial dismissal in December 2021, and as of January
44
+ 2024, the trial's decision is pending.
45
+ sentences:
46
+ - What types of payment rates are used for dialysis treatments and associated pharmaceuticals?
47
+ - What legal claims does Fortis Advisors LLC allege against Ethicon Inc. in the
48
+ lawsuit related to the acquisition of Auris Health Inc.?
49
+ - What were the key components of the acquisition deal between ICE and Black Knight
50
+ completed on September 5, 2023?
51
+ - source_sentence: Net cash provided by operating activities was $712.2 million and
52
+ $223.7 million for the year ended December 31, 2023 and 2022, respectively. The
53
+ increase was primarily driven by timing of payments to vendors and timing of the
54
+ receipt of payments from our customers, as well as an increase in interest income.
55
+ sentences:
56
+ - What caused the increase in net cash provided by operating activities between
57
+ 2022 and 2023?
58
+ - How long did Joanne D. Smith serve as the Vice President - Marketing at Delta?
59
+ - How does the management experience of Mr. Robert G. Goldstein benefit the company?
60
+ - source_sentence: We believe that, to varying degrees, our trademarks, trade names,
61
+ copyrights, proprietary processes, trade secrets, trade dress, domain names and
62
+ similar intellectual property add significant value to our business
63
+ sentences:
64
+ - What were the net interest expense on pre-acquisition-related debt and the cost
65
+ associated with the extinguishment of senior notes for 2022 as part of non-GAAP
66
+ adjustments?
67
+ - How did the fluctuation in foreign currency exchange rates impact the consolidated
68
+ net operating revenues in 2023?
69
+ - What does the company believe adds significant value to its business regarding
70
+ intellectual property?
71
+ - source_sentence: The consolidated financial statements are incorporated by reference
72
+ in the Annual Report on Form 10-K, indicating they are treated as part of the
73
+ document for legal and reporting purposes.
74
+ sentences:
75
+ - What does it mean for financial statements to be incorporated by reference?
76
+ - What is contained within the pages 163-309 of the financial section?
77
+ - What were the key business segments of The Goldman Sachs Group, Inc. as reported
78
+ in their 2023 financial disclosures?
79
+ model-index:
80
+ - name: BGE base Financial Matryoshka
81
+ results:
82
+ - task:
83
+ type: information-retrieval
84
+ name: Information Retrieval
85
+ dataset:
86
+ name: dim 768
87
+ type: dim_768
88
+ metrics:
89
+ - type: cosine_accuracy@1
90
+ value: 0.7014285714285714
91
+ name: Cosine Accuracy@1
92
+ - type: cosine_accuracy@3
93
+ value: 0.8271428571428572
94
+ name: Cosine Accuracy@3
95
+ - type: cosine_accuracy@5
96
+ value: 0.8714285714285714
97
+ name: Cosine Accuracy@5
98
+ - type: cosine_accuracy@10
99
+ value: 0.9028571428571428
100
+ name: Cosine Accuracy@10
101
+ - type: cosine_precision@1
102
+ value: 0.7014285714285714
103
+ name: Cosine Precision@1
104
+ - type: cosine_precision@3
105
+ value: 0.2757142857142857
106
+ name: Cosine Precision@3
107
+ - type: cosine_precision@5
108
+ value: 0.17428571428571427
109
+ name: Cosine Precision@5
110
+ - type: cosine_precision@10
111
+ value: 0.09028571428571427
112
+ name: Cosine Precision@10
113
+ - type: cosine_recall@1
114
+ value: 0.7014285714285714
115
+ name: Cosine Recall@1
116
+ - type: cosine_recall@3
117
+ value: 0.8271428571428572
118
+ name: Cosine Recall@3
119
+ - type: cosine_recall@5
120
+ value: 0.8714285714285714
121
+ name: Cosine Recall@5
122
+ - type: cosine_recall@10
123
+ value: 0.9028571428571428
124
+ name: Cosine Recall@10
125
+ - type: cosine_ndcg@10
126
+ value: 0.8043195367351605
127
+ name: Cosine Ndcg@10
128
+ - type: cosine_mrr@10
129
+ value: 0.7724552154195008
130
+ name: Cosine Mrr@10
131
+ - type: cosine_map@100
132
+ value: 0.7766441682397275
133
+ name: Cosine Map@100
134
+ - task:
135
+ type: information-retrieval
136
+ name: Information Retrieval
137
+ dataset:
138
+ name: dim 512
139
+ type: dim_512
140
+ metrics:
141
+ - type: cosine_accuracy@1
142
+ value: 0.7
143
+ name: Cosine Accuracy@1
144
+ - type: cosine_accuracy@3
145
+ value: 0.8328571428571429
146
+ name: Cosine Accuracy@3
147
+ - type: cosine_accuracy@5
148
+ value: 0.8685714285714285
149
+ name: Cosine Accuracy@5
150
+ - type: cosine_accuracy@10
151
+ value: 0.9042857142857142
152
+ name: Cosine Accuracy@10
153
+ - type: cosine_precision@1
154
+ value: 0.7
155
+ name: Cosine Precision@1
156
+ - type: cosine_precision@3
157
+ value: 0.2776190476190476
158
+ name: Cosine Precision@3
159
+ - type: cosine_precision@5
160
+ value: 0.17371428571428568
161
+ name: Cosine Precision@5
162
+ - type: cosine_precision@10
163
+ value: 0.09042857142857141
164
+ name: Cosine Precision@10
165
+ - type: cosine_recall@1
166
+ value: 0.7
167
+ name: Cosine Recall@1
168
+ - type: cosine_recall@3
169
+ value: 0.8328571428571429
170
+ name: Cosine Recall@3
171
+ - type: cosine_recall@5
172
+ value: 0.8685714285714285
173
+ name: Cosine Recall@5
174
+ - type: cosine_recall@10
175
+ value: 0.9042857142857142
176
+ name: Cosine Recall@10
177
+ - type: cosine_ndcg@10
178
+ value: 0.804097602951568
179
+ name: Cosine Ndcg@10
180
+ - type: cosine_mrr@10
181
+ value: 0.771829365079365
182
+ name: Cosine Mrr@10
183
+ - type: cosine_map@100
184
+ value: 0.7756860707173107
185
+ name: Cosine Map@100
186
+ - task:
187
+ type: information-retrieval
188
+ name: Information Retrieval
189
+ dataset:
190
+ name: dim 256
191
+ type: dim_256
192
+ metrics:
193
+ - type: cosine_accuracy@1
194
+ value: 0.7
195
+ name: Cosine Accuracy@1
196
+ - type: cosine_accuracy@3
197
+ value: 0.8214285714285714
198
+ name: Cosine Accuracy@3
199
+ - type: cosine_accuracy@5
200
+ value: 0.8557142857142858
201
+ name: Cosine Accuracy@5
202
+ - type: cosine_accuracy@10
203
+ value: 0.89
204
+ name: Cosine Accuracy@10
205
+ - type: cosine_precision@1
206
+ value: 0.7
207
+ name: Cosine Precision@1
208
+ - type: cosine_precision@3
209
+ value: 0.27380952380952384
210
+ name: Cosine Precision@3
211
+ - type: cosine_precision@5
212
+ value: 0.17114285714285712
213
+ name: Cosine Precision@5
214
+ - type: cosine_precision@10
215
+ value: 0.08899999999999998
216
+ name: Cosine Precision@10
217
+ - type: cosine_recall@1
218
+ value: 0.7
219
+ name: Cosine Recall@1
220
+ - type: cosine_recall@3
221
+ value: 0.8214285714285714
222
+ name: Cosine Recall@3
223
+ - type: cosine_recall@5
224
+ value: 0.8557142857142858
225
+ name: Cosine Recall@5
226
+ - type: cosine_recall@10
227
+ value: 0.89
228
+ name: Cosine Recall@10
229
+ - type: cosine_ndcg@10
230
+ value: 0.7977242461477416
231
+ name: Cosine Ndcg@10
232
+ - type: cosine_mrr@10
233
+ value: 0.7678412698412698
234
+ name: Cosine Mrr@10
235
+ - type: cosine_map@100
236
+ value: 0.7726663884946474
237
+ name: Cosine Map@100
238
+ - task:
239
+ type: information-retrieval
240
+ name: Information Retrieval
241
+ dataset:
242
+ name: dim 128
243
+ type: dim_128
244
+ metrics:
245
+ - type: cosine_accuracy@1
246
+ value: 0.6785714285714286
247
+ name: Cosine Accuracy@1
248
+ - type: cosine_accuracy@3
249
+ value: 0.8257142857142857
250
+ name: Cosine Accuracy@3
251
+ - type: cosine_accuracy@5
252
+ value: 0.8528571428571429
253
+ name: Cosine Accuracy@5
254
+ - type: cosine_accuracy@10
255
+ value: 0.8857142857142857
256
+ name: Cosine Accuracy@10
257
+ - type: cosine_precision@1
258
+ value: 0.6785714285714286
259
+ name: Cosine Precision@1
260
+ - type: cosine_precision@3
261
+ value: 0.2752380952380953
262
+ name: Cosine Precision@3
263
+ - type: cosine_precision@5
264
+ value: 0.17057142857142857
265
+ name: Cosine Precision@5
266
+ - type: cosine_precision@10
267
+ value: 0.08857142857142856
268
+ name: Cosine Precision@10
269
+ - type: cosine_recall@1
270
+ value: 0.6785714285714286
271
+ name: Cosine Recall@1
272
+ - type: cosine_recall@3
273
+ value: 0.8257142857142857
274
+ name: Cosine Recall@3
275
+ - type: cosine_recall@5
276
+ value: 0.8528571428571429
277
+ name: Cosine Recall@5
278
+ - type: cosine_recall@10
279
+ value: 0.8857142857142857
280
+ name: Cosine Recall@10
281
+ - type: cosine_ndcg@10
282
+ value: 0.7864311013349103
283
+ name: Cosine Ndcg@10
284
+ - type: cosine_mrr@10
285
+ value: 0.754115079365079
286
+ name: Cosine Mrr@10
287
+ - type: cosine_map@100
288
+ value: 0.7585731100549844
289
+ name: Cosine Map@100
290
+ - task:
291
+ type: information-retrieval
292
+ name: Information Retrieval
293
+ dataset:
294
+ name: dim 64
295
+ type: dim_64
296
+ metrics:
297
+ - type: cosine_accuracy@1
298
+ value: 0.6642857142857143
299
+ name: Cosine Accuracy@1
300
+ - type: cosine_accuracy@3
301
+ value: 0.7828571428571428
302
+ name: Cosine Accuracy@3
303
+ - type: cosine_accuracy@5
304
+ value: 0.8157142857142857
305
+ name: Cosine Accuracy@5
306
+ - type: cosine_accuracy@10
307
+ value: 0.8642857142857143
308
+ name: Cosine Accuracy@10
309
+ - type: cosine_precision@1
310
+ value: 0.6642857142857143
311
+ name: Cosine Precision@1
312
+ - type: cosine_precision@3
313
+ value: 0.26095238095238094
314
+ name: Cosine Precision@3
315
+ - type: cosine_precision@5
316
+ value: 0.16314285714285712
317
+ name: Cosine Precision@5
318
+ - type: cosine_precision@10
319
+ value: 0.08642857142857142
320
+ name: Cosine Precision@10
321
+ - type: cosine_recall@1
322
+ value: 0.6642857142857143
323
+ name: Cosine Recall@1
324
+ - type: cosine_recall@3
325
+ value: 0.7828571428571428
326
+ name: Cosine Recall@3
327
+ - type: cosine_recall@5
328
+ value: 0.8157142857142857
329
+ name: Cosine Recall@5
330
+ - type: cosine_recall@10
331
+ value: 0.8642857142857143
332
+ name: Cosine Recall@10
333
+ - type: cosine_ndcg@10
334
+ value: 0.7634746514041137
335
+ name: Cosine Ndcg@10
336
+ - type: cosine_mrr@10
337
+ value: 0.7313633786848066
338
+ name: Cosine Mrr@10
339
+ - type: cosine_map@100
340
+ value: 0.7360563668571922
341
+ name: Cosine Map@100
342
+ ---
343
+
344
+ # BGE base Financial Matryoshka
345
+
346
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
347
+
348
+ ## Model Details
349
+
350
+ ### Model Description
351
+ - **Model Type:** Sentence Transformer
352
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
353
+ - **Maximum Sequence Length:** 512 tokens
354
+ - **Output Dimensionality:** 768 tokens
355
+ - **Similarity Function:** Cosine Similarity
356
+ <!-- - **Training Dataset:** Unknown -->
357
+ - **Language:** en
358
+ - **License:** apache-2.0
359
+
360
+ ### Model Sources
361
+
362
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
363
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
364
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
365
+
366
+ ### Full Model Architecture
367
+
368
+ ```
369
+ SentenceTransformer(
370
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
371
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
372
+ (2): Normalize()
373
+ )
374
+ ```
375
+
376
+ ## Usage
377
+
378
+ ### Direct Usage (Sentence Transformers)
379
+
380
+ First install the Sentence Transformers library:
381
+
382
+ ```bash
383
+ pip install -U sentence-transformers
384
+ ```
385
+
386
+ Then you can load this model and run inference.
387
+ ```python
388
+ from sentence_transformers import SentenceTransformer
389
+
390
+ # Download from the 🤗 Hub
391
+ model = SentenceTransformer("Yohhei/bge-base-financial-matryoshka")
392
+ # Run inference
393
+ sentences = [
394
+ 'The consolidated financial statements are incorporated by reference in the Annual Report on Form 10-K, indicating they are treated as part of the document for legal and reporting purposes.',
395
+ 'What does it mean for financial statements to be incorporated by reference?',
396
+ 'What is contained within the pages 163-309 of the financial section?',
397
+ ]
398
+ embeddings = model.encode(sentences)
399
+ print(embeddings.shape)
400
+ # [3, 768]
401
+
402
+ # Get the similarity scores for the embeddings
403
+ similarities = model.similarity(embeddings, embeddings)
404
+ print(similarities.shape)
405
+ # [3, 3]
406
+ ```
407
+
408
+ <!--
409
+ ### Direct Usage (Transformers)
410
+
411
+ <details><summary>Click to see the direct usage in Transformers</summary>
412
+
413
+ </details>
414
+ -->
415
+
416
+ <!--
417
+ ### Downstream Usage (Sentence Transformers)
418
+
419
+ You can finetune this model on your own dataset.
420
+
421
+ <details><summary>Click to expand</summary>
422
+
423
+ </details>
424
+ -->
425
+
426
+ <!--
427
+ ### Out-of-Scope Use
428
+
429
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
430
+ -->
431
+
432
+ ## Evaluation
433
+
434
+ ### Metrics
435
+
436
+ #### Information Retrieval
437
+ * Dataset: `dim_768`
438
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
439
+
440
+ | Metric | Value |
441
+ |:--------------------|:-----------|
442
+ | cosine_accuracy@1 | 0.7014 |
443
+ | cosine_accuracy@3 | 0.8271 |
444
+ | cosine_accuracy@5 | 0.8714 |
445
+ | cosine_accuracy@10 | 0.9029 |
446
+ | cosine_precision@1 | 0.7014 |
447
+ | cosine_precision@3 | 0.2757 |
448
+ | cosine_precision@5 | 0.1743 |
449
+ | cosine_precision@10 | 0.0903 |
450
+ | cosine_recall@1 | 0.7014 |
451
+ | cosine_recall@3 | 0.8271 |
452
+ | cosine_recall@5 | 0.8714 |
453
+ | cosine_recall@10 | 0.9029 |
454
+ | cosine_ndcg@10 | 0.8043 |
455
+ | cosine_mrr@10 | 0.7725 |
456
+ | **cosine_map@100** | **0.7766** |
457
+
458
+ #### Information Retrieval
459
+ * Dataset: `dim_512`
460
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
461
+
462
+ | Metric | Value |
463
+ |:--------------------|:-----------|
464
+ | cosine_accuracy@1 | 0.7 |
465
+ | cosine_accuracy@3 | 0.8329 |
466
+ | cosine_accuracy@5 | 0.8686 |
467
+ | cosine_accuracy@10 | 0.9043 |
468
+ | cosine_precision@1 | 0.7 |
469
+ | cosine_precision@3 | 0.2776 |
470
+ | cosine_precision@5 | 0.1737 |
471
+ | cosine_precision@10 | 0.0904 |
472
+ | cosine_recall@1 | 0.7 |
473
+ | cosine_recall@3 | 0.8329 |
474
+ | cosine_recall@5 | 0.8686 |
475
+ | cosine_recall@10 | 0.9043 |
476
+ | cosine_ndcg@10 | 0.8041 |
477
+ | cosine_mrr@10 | 0.7718 |
478
+ | **cosine_map@100** | **0.7757** |
479
+
480
+ #### Information Retrieval
481
+ * Dataset: `dim_256`
482
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
483
+
484
+ | Metric | Value |
485
+ |:--------------------|:-----------|
486
+ | cosine_accuracy@1 | 0.7 |
487
+ | cosine_accuracy@3 | 0.8214 |
488
+ | cosine_accuracy@5 | 0.8557 |
489
+ | cosine_accuracy@10 | 0.89 |
490
+ | cosine_precision@1 | 0.7 |
491
+ | cosine_precision@3 | 0.2738 |
492
+ | cosine_precision@5 | 0.1711 |
493
+ | cosine_precision@10 | 0.089 |
494
+ | cosine_recall@1 | 0.7 |
495
+ | cosine_recall@3 | 0.8214 |
496
+ | cosine_recall@5 | 0.8557 |
497
+ | cosine_recall@10 | 0.89 |
498
+ | cosine_ndcg@10 | 0.7977 |
499
+ | cosine_mrr@10 | 0.7678 |
500
+ | **cosine_map@100** | **0.7727** |
501
+
502
+ #### Information Retrieval
503
+ * Dataset: `dim_128`
504
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
505
+
506
+ | Metric | Value |
507
+ |:--------------------|:-----------|
508
+ | cosine_accuracy@1 | 0.6786 |
509
+ | cosine_accuracy@3 | 0.8257 |
510
+ | cosine_accuracy@5 | 0.8529 |
511
+ | cosine_accuracy@10 | 0.8857 |
512
+ | cosine_precision@1 | 0.6786 |
513
+ | cosine_precision@3 | 0.2752 |
514
+ | cosine_precision@5 | 0.1706 |
515
+ | cosine_precision@10 | 0.0886 |
516
+ | cosine_recall@1 | 0.6786 |
517
+ | cosine_recall@3 | 0.8257 |
518
+ | cosine_recall@5 | 0.8529 |
519
+ | cosine_recall@10 | 0.8857 |
520
+ | cosine_ndcg@10 | 0.7864 |
521
+ | cosine_mrr@10 | 0.7541 |
522
+ | **cosine_map@100** | **0.7586** |
523
+
524
+ #### Information Retrieval
525
+ * Dataset: `dim_64`
526
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
527
+
528
+ | Metric | Value |
529
+ |:--------------------|:-----------|
530
+ | cosine_accuracy@1 | 0.6643 |
531
+ | cosine_accuracy@3 | 0.7829 |
532
+ | cosine_accuracy@5 | 0.8157 |
533
+ | cosine_accuracy@10 | 0.8643 |
534
+ | cosine_precision@1 | 0.6643 |
535
+ | cosine_precision@3 | 0.261 |
536
+ | cosine_precision@5 | 0.1631 |
537
+ | cosine_precision@10 | 0.0864 |
538
+ | cosine_recall@1 | 0.6643 |
539
+ | cosine_recall@3 | 0.7829 |
540
+ | cosine_recall@5 | 0.8157 |
541
+ | cosine_recall@10 | 0.8643 |
542
+ | cosine_ndcg@10 | 0.7635 |
543
+ | cosine_mrr@10 | 0.7314 |
544
+ | **cosine_map@100** | **0.7361** |
545
+
546
+ <!--
547
+ ## Bias, Risks and Limitations
548
+
549
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
550
+ -->
551
+
552
+ <!--
553
+ ### Recommendations
554
+
555
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
556
+ -->
557
+
558
+ ## Training Details
559
+
560
+ ### Training Dataset
561
+
562
+ #### Unnamed Dataset
563
+
564
+
565
+ * Size: 6,300 training samples
566
+ * Columns: <code>positive</code> and <code>anchor</code>
567
+ * Approximate statistics based on the first 1000 samples:
568
+ | | positive | anchor |
569
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
570
+ | type | string | string |
571
+ | details | <ul><li>min: 8 tokens</li><li>mean: 45.16 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.44 tokens</li><li>max: 45 tokens</li></ul> |
572
+ * Samples:
573
+ | positive | anchor |
574
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------|
575
+ | <code>Highlights during fiscal year 2023 include the following: We generated $18,085 million of cash from operations.</code> | <code>What was the amount of cash generated from operations by the company in fiscal year 2023?</code> |
576
+ | <code>U.S. government and agency securities | $ | 7,950 | | $ | (336 | ) | $ | 45,273 | $ | (3,534 | ) | $ | 53,223 | $ | (3,870 | )</code> | <code>How much were unrealized losses on U.S. government and agency securities for those held for 12 months or greater as of June 30, 2023?</code> |
577
+ | <code>For assets under development, assets are grouped and assessed for impairment by estimating the undiscounted cash flows, which include remaining construction costs, over the asset's remaining useful life. If cash flows do not exceed the carrying amount, impairment based on fair value versus carrying value is considered.</code> | <code>How is the impairment of assets assessed for projects still under development?</code> |
578
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
579
+ ```json
580
+ {
581
+ "loss": "MultipleNegativesRankingLoss",
582
+ "matryoshka_dims": [
583
+ 768,
584
+ 512,
585
+ 256,
586
+ 128,
587
+ 64
588
+ ],
589
+ "matryoshka_weights": [
590
+ 1,
591
+ 1,
592
+ 1,
593
+ 1,
594
+ 1
595
+ ],
596
+ "n_dims_per_step": -1
597
+ }
598
+ ```
599
+
600
+ ### Training Hyperparameters
601
+ #### Non-Default Hyperparameters
602
+
603
+ - `eval_strategy`: epoch
604
+ - `per_device_train_batch_size`: 32
605
+ - `per_device_eval_batch_size`: 16
606
+ - `gradient_accumulation_steps`: 16
607
+ - `learning_rate`: 2e-05
608
+ - `num_train_epochs`: 4
609
+ - `lr_scheduler_type`: cosine
610
+ - `warmup_ratio`: 0.1
611
+ - `bf16`: True
612
+ - `tf32`: True
613
+ - `load_best_model_at_end`: True
614
+ - `optim`: adamw_torch_fused
615
+ - `batch_sampler`: no_duplicates
616
+
617
+ #### All Hyperparameters
618
+ <details><summary>Click to expand</summary>
619
+
620
+ - `overwrite_output_dir`: False
621
+ - `do_predict`: False
622
+ - `eval_strategy`: epoch
623
+ - `prediction_loss_only`: True
624
+ - `per_device_train_batch_size`: 32
625
+ - `per_device_eval_batch_size`: 16
626
+ - `per_gpu_train_batch_size`: None
627
+ - `per_gpu_eval_batch_size`: None
628
+ - `gradient_accumulation_steps`: 16
629
+ - `eval_accumulation_steps`: None
630
+ - `learning_rate`: 2e-05
631
+ - `weight_decay`: 0.0
632
+ - `adam_beta1`: 0.9
633
+ - `adam_beta2`: 0.999
634
+ - `adam_epsilon`: 1e-08
635
+ - `max_grad_norm`: 1.0
636
+ - `num_train_epochs`: 4
637
+ - `max_steps`: -1
638
+ - `lr_scheduler_type`: cosine
639
+ - `lr_scheduler_kwargs`: {}
640
+ - `warmup_ratio`: 0.1
641
+ - `warmup_steps`: 0
642
+ - `log_level`: passive
643
+ - `log_level_replica`: warning
644
+ - `log_on_each_node`: True
645
+ - `logging_nan_inf_filter`: True
646
+ - `save_safetensors`: True
647
+ - `save_on_each_node`: False
648
+ - `save_only_model`: False
649
+ - `restore_callback_states_from_checkpoint`: False
650
+ - `no_cuda`: False
651
+ - `use_cpu`: False
652
+ - `use_mps_device`: False
653
+ - `seed`: 42
654
+ - `data_seed`: None
655
+ - `jit_mode_eval`: False
656
+ - `use_ipex`: False
657
+ - `bf16`: True
658
+ - `fp16`: False
659
+ - `fp16_opt_level`: O1
660
+ - `half_precision_backend`: auto
661
+ - `bf16_full_eval`: False
662
+ - `fp16_full_eval`: False
663
+ - `tf32`: True
664
+ - `local_rank`: 0
665
+ - `ddp_backend`: None
666
+ - `tpu_num_cores`: None
667
+ - `tpu_metrics_debug`: False
668
+ - `debug`: []
669
+ - `dataloader_drop_last`: False
670
+ - `dataloader_num_workers`: 0
671
+ - `dataloader_prefetch_factor`: None
672
+ - `past_index`: -1
673
+ - `disable_tqdm`: False
674
+ - `remove_unused_columns`: True
675
+ - `label_names`: None
676
+ - `load_best_model_at_end`: True
677
+ - `ignore_data_skip`: False
678
+ - `fsdp`: []
679
+ - `fsdp_min_num_params`: 0
680
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
681
+ - `fsdp_transformer_layer_cls_to_wrap`: None
682
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
683
+ - `deepspeed`: None
684
+ - `label_smoothing_factor`: 0.0
685
+ - `optim`: adamw_torch_fused
686
+ - `optim_args`: None
687
+ - `adafactor`: False
688
+ - `group_by_length`: False
689
+ - `length_column_name`: length
690
+ - `ddp_find_unused_parameters`: None
691
+ - `ddp_bucket_cap_mb`: None
692
+ - `ddp_broadcast_buffers`: False
693
+ - `dataloader_pin_memory`: True
694
+ - `dataloader_persistent_workers`: False
695
+ - `skip_memory_metrics`: True
696
+ - `use_legacy_prediction_loop`: False
697
+ - `push_to_hub`: False
698
+ - `resume_from_checkpoint`: None
699
+ - `hub_model_id`: None
700
+ - `hub_strategy`: every_save
701
+ - `hub_private_repo`: False
702
+ - `hub_always_push`: False
703
+ - `gradient_checkpointing`: False
704
+ - `gradient_checkpointing_kwargs`: None
705
+ - `include_inputs_for_metrics`: False
706
+ - `eval_do_concat_batches`: True
707
+ - `fp16_backend`: auto
708
+ - `push_to_hub_model_id`: None
709
+ - `push_to_hub_organization`: None
710
+ - `mp_parameters`:
711
+ - `auto_find_batch_size`: False
712
+ - `full_determinism`: False
713
+ - `torchdynamo`: None
714
+ - `ray_scope`: last
715
+ - `ddp_timeout`: 1800
716
+ - `torch_compile`: False
717
+ - `torch_compile_backend`: None
718
+ - `torch_compile_mode`: None
719
+ - `dispatch_batches`: None
720
+ - `split_batches`: None
721
+ - `include_tokens_per_second`: False
722
+ - `include_num_input_tokens_seen`: False
723
+ - `neftune_noise_alpha`: None
724
+ - `optim_target_modules`: None
725
+ - `batch_eval_metrics`: False
726
+ - `batch_sampler`: no_duplicates
727
+ - `multi_dataset_batch_sampler`: proportional
728
+
729
+ </details>
730
+
731
+ ### Training Logs
732
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
733
+ |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
734
+ | 0.8122 | 10 | 1.5313 | - | - | - | - | - |
735
+ | 0.9746 | 12 | - | 0.7416 | 0.7521 | 0.7554 | 0.7079 | 0.7609 |
736
+ | 1.6244 | 20 | 0.6553 | - | - | - | - | - |
737
+ | 1.9492 | 24 | - | 0.7549 | 0.7693 | 0.7732 | 0.7318 | 0.7716 |
738
+ | 2.4365 | 30 | 0.445 | - | - | - | - | - |
739
+ | 2.9239 | 36 | - | 0.7565 | 0.7738 | 0.7746 | 0.7367 | 0.7763 |
740
+ | 3.2487 | 40 | 0.3917 | - | - | - | - | - |
741
+ | **3.8985** | **48** | **-** | **0.7586** | **0.7727** | **0.7757** | **0.7361** | **0.7766** |
742
+
743
+ * The bold row denotes the saved checkpoint.
744
+
745
+ ### Framework Versions
746
+ - Python: 3.8.10
747
+ - Sentence Transformers: 3.0.1
748
+ - Transformers: 4.41.2
749
+ - PyTorch: 2.1.2+cu121
750
+ - Accelerate: 0.32.0
751
+ - Datasets: 2.19.1
752
+ - Tokenizers: 0.19.1
753
+
754
+ ## Citation
755
+
756
+ ### BibTeX
757
+
758
+ #### Sentence Transformers
759
+ ```bibtex
760
+ @inproceedings{reimers-2019-sentence-bert,
761
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
762
+ author = "Reimers, Nils and Gurevych, Iryna",
763
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
764
+ month = "11",
765
+ year = "2019",
766
+ publisher = "Association for Computational Linguistics",
767
+ url = "https://arxiv.org/abs/1908.10084",
768
+ }
769
+ ```
770
+
771
+ #### MatryoshkaLoss
772
+ ```bibtex
773
+ @misc{kusupati2024matryoshka,
774
+ title={Matryoshka Representation Learning},
775
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
776
+ year={2024},
777
+ eprint={2205.13147},
778
+ archivePrefix={arXiv},
779
+ primaryClass={cs.LG}
780
+ }
781
+ ```
782
+
783
+ #### MultipleNegativesRankingLoss
784
+ ```bibtex
785
+ @misc{henderson2017efficient,
786
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
787
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
788
+ year={2017},
789
+ eprint={1705.00652},
790
+ archivePrefix={arXiv},
791
+ primaryClass={cs.CL}
792
+ }
793
+ ```
794
+
795
+ <!--
796
+ ## Glossary
797
+
798
+ *Clearly define terms in order to be accessible across audiences.*
799
+ -->
800
+
801
+ <!--
802
+ ## Model Card Authors
803
+
804
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
805
+ -->
806
+
807
+ <!--
808
+ ## Model Card Contact
809
+
810
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
811
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a227424bca80ecbc3f52c95f390d72b9d061205303bc0a2e52dfa169048f729a
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff