Create Usage prediction.py
Browse files- Usage prediction.py +424 -0
Usage prediction.py
ADDED
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from PIL import Image
|
6 |
+
from tqdm import tqdm
|
7 |
+
import torch.nn as nn
|
8 |
+
from torchvision import models
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torchvision import transforms
|
11 |
+
from torch.utils.data import Dataset, DataLoader
|
12 |
+
from typing import Dict, List, Tuple, Optional, Union
|
13 |
+
from dataclasses import dataclass
|
14 |
+
import warnings
|
15 |
+
warnings.filterwarnings('ignore')
|
16 |
+
|
17 |
+
# ----------------------------
|
18 |
+
# Configuration
|
19 |
+
# ----------------------------
|
20 |
+
@dataclass
|
21 |
+
class InferenceConfig:
|
22 |
+
# Model Configuration
|
23 |
+
model_name: str = "resnet34"
|
24 |
+
embedding_dim: int = 128
|
25 |
+
normalize_embeddings: bool = True
|
26 |
+
checkpoint_path: str = "../../model/models_checkpoints/best_model.pth"
|
27 |
+
|
28 |
+
# Inference Settings
|
29 |
+
batch_size: int = 32
|
30 |
+
device: str = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
+
distance_threshold: float = 0.5 # Will be loaded from checkpoint
|
32 |
+
|
33 |
+
# Data Settings
|
34 |
+
remove_bg: bool = False
|
35 |
+
num_workers: int = 4
|
36 |
+
|
37 |
+
# Global configuration
|
38 |
+
CONFIG = InferenceConfig()
|
39 |
+
|
40 |
+
# ----------------------------
|
41 |
+
# Model Architecture (Same as training)
|
42 |
+
# ----------------------------
|
43 |
+
class ResNetBackbone(nn.Module):
|
44 |
+
"""ResNet backbone feature extractor."""
|
45 |
+
|
46 |
+
def __init__(self, model_name: str = "resnet34"):
|
47 |
+
super().__init__()
|
48 |
+
|
49 |
+
if model_name == "resnet18":
|
50 |
+
self.resnet = models.resnet18(weights=None)
|
51 |
+
elif model_name == "resnet34":
|
52 |
+
self.resnet = models.resnet34(weights=None)
|
53 |
+
elif model_name == "resnet50":
|
54 |
+
self.resnet = models.resnet50(weights=None)
|
55 |
+
else:
|
56 |
+
raise ValueError(f"Unsupported model_name: {model_name}")
|
57 |
+
|
58 |
+
# Remove the fully connected layer
|
59 |
+
self.resnet.fc = nn.Identity()
|
60 |
+
|
61 |
+
# Get output dimension
|
62 |
+
with torch.no_grad():
|
63 |
+
dummy = torch.randn(1, 3, 224, 224)
|
64 |
+
self.output_dim = self.resnet(dummy).shape[1]
|
65 |
+
|
66 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
67 |
+
return self.resnet(x)
|
68 |
+
|
69 |
+
class AdvancedEmbeddingHead(nn.Module):
|
70 |
+
"""Embedding head to project features to embedding space."""
|
71 |
+
|
72 |
+
def __init__(self, input_dim: int, embedding_dim: int, dropout: float = 0.5):
|
73 |
+
super().__init__()
|
74 |
+
|
75 |
+
self.input_dim = input_dim
|
76 |
+
self.embedding_dim = embedding_dim
|
77 |
+
|
78 |
+
if input_dim > embedding_dim * 4:
|
79 |
+
hidden_dim = max(embedding_dim * 2, input_dim // 4)
|
80 |
+
self.layers = nn.Sequential(
|
81 |
+
nn.Linear(input_dim, hidden_dim),
|
82 |
+
nn.LayerNorm(hidden_dim),
|
83 |
+
nn.GELU(),
|
84 |
+
nn.Dropout(dropout),
|
85 |
+
|
86 |
+
nn.Linear(hidden_dim, embedding_dim * 2),
|
87 |
+
nn.LayerNorm(embedding_dim * 2),
|
88 |
+
nn.GELU(),
|
89 |
+
nn.Dropout(dropout / 2),
|
90 |
+
|
91 |
+
nn.Linear(embedding_dim * 2, embedding_dim),
|
92 |
+
nn.LayerNorm(embedding_dim)
|
93 |
+
)
|
94 |
+
else:
|
95 |
+
self.layers = nn.Sequential(
|
96 |
+
nn.Linear(input_dim, embedding_dim),
|
97 |
+
nn.LayerNorm(embedding_dim)
|
98 |
+
)
|
99 |
+
|
100 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
101 |
+
x = x.flatten(1)
|
102 |
+
return self.layers(x)
|
103 |
+
|
104 |
+
class SiameseSignatureNetwork(nn.Module):
|
105 |
+
"""Siamese network for signature verification."""
|
106 |
+
|
107 |
+
def __init__(self, config: InferenceConfig = CONFIG):
|
108 |
+
super().__init__()
|
109 |
+
self.config = config
|
110 |
+
|
111 |
+
# Initialize backbone
|
112 |
+
self.backbone = ResNetBackbone(model_name=config.model_name)
|
113 |
+
backbone_dim = self.backbone.output_dim
|
114 |
+
|
115 |
+
# Initialize embedding head
|
116 |
+
self.embedding_head = AdvancedEmbeddingHead(
|
117 |
+
input_dim=backbone_dim,
|
118 |
+
embedding_dim=config.embedding_dim,
|
119 |
+
dropout=0.0 # No dropout during inference
|
120 |
+
)
|
121 |
+
|
122 |
+
self.normalize_embeddings = config.normalize_embeddings
|
123 |
+
self.distance_threshold = config.distance_threshold
|
124 |
+
|
125 |
+
def forward(self, img1: torch.Tensor, img2: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
126 |
+
"""Forward pass for inference."""
|
127 |
+
# Extract features
|
128 |
+
f1 = self.backbone(img1)
|
129 |
+
f2 = self.backbone(img2)
|
130 |
+
|
131 |
+
# Get embeddings
|
132 |
+
emb1 = self.embedding_head(f1)
|
133 |
+
emb2 = self.embedding_head(f2)
|
134 |
+
|
135 |
+
# Normalize if configured
|
136 |
+
if self.normalize_embeddings:
|
137 |
+
emb1 = F.normalize(emb1, p=2, dim=1)
|
138 |
+
emb2 = F.normalize(emb2, p=2, dim=1)
|
139 |
+
|
140 |
+
return emb1, emb2
|
141 |
+
|
142 |
+
def predict_pair(self, img1: torch.Tensor, img2: torch.Tensor,
|
143 |
+
threshold: Optional[float] = None) -> Dict[str, torch.Tensor]:
|
144 |
+
"""Predict similarity between image pairs."""
|
145 |
+
self.eval()
|
146 |
+
with torch.no_grad():
|
147 |
+
emb1, emb2 = self(img1, img2)
|
148 |
+
distances = F.pairwise_distance(emb1, emb2)
|
149 |
+
|
150 |
+
thresh = threshold if threshold is not None else self.distance_threshold
|
151 |
+
predictions = (distances < thresh).long()
|
152 |
+
|
153 |
+
# Convert distance to similarity score (0-1, higher is more similar)
|
154 |
+
similarities = 1.0 / (1.0 + distances)
|
155 |
+
|
156 |
+
return {
|
157 |
+
'predictions': predictions,
|
158 |
+
'distances': distances,
|
159 |
+
'similarities': similarities,
|
160 |
+
'threshold': torch.tensor(thresh)
|
161 |
+
}
|
162 |
+
|
163 |
+
# ----------------------------
|
164 |
+
# Dataset for Batch Prediction
|
165 |
+
# ----------------------------
|
166 |
+
class PredictionDataset(Dataset):
|
167 |
+
"""Dataset for batch prediction from Excel."""
|
168 |
+
|
169 |
+
def __init__(self, excel_path: str, image_folder: str, config: InferenceConfig = CONFIG):
|
170 |
+
self.image_folder = image_folder
|
171 |
+
self.config = config
|
172 |
+
self.data = pd.read_excel(excel_path)
|
173 |
+
self.transform = self._get_transforms()
|
174 |
+
|
175 |
+
# Check required columns
|
176 |
+
required_cols = ['image_1_path', 'image_2_path']
|
177 |
+
missing_cols = [col for col in required_cols if col not in self.data.columns]
|
178 |
+
if missing_cols:
|
179 |
+
raise ValueError(f"Missing required columns: {missing_cols}")
|
180 |
+
|
181 |
+
def _get_transforms(self) -> transforms.Compose:
|
182 |
+
"""Get image transforms for inference."""
|
183 |
+
return transforms.Compose([
|
184 |
+
transforms.Resize((224, 224)),
|
185 |
+
transforms.ToTensor(),
|
186 |
+
transforms.Normalize(
|
187 |
+
mean=[0.485, 0.456, 0.406],
|
188 |
+
std=[0.229, 0.224, 0.225]
|
189 |
+
)
|
190 |
+
])
|
191 |
+
|
192 |
+
def __len__(self) -> int:
|
193 |
+
return len(self.data)
|
194 |
+
|
195 |
+
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, int]:
|
196 |
+
"""Return image pair and index."""
|
197 |
+
row = self.data.iloc[idx]
|
198 |
+
|
199 |
+
img1 = self._load_image(row['image_1_path'])
|
200 |
+
img2 = self._load_image(row['image_2_path'])
|
201 |
+
|
202 |
+
return img1, img2, idx
|
203 |
+
|
204 |
+
def _load_image(self, image_path: str) -> torch.Tensor:
|
205 |
+
"""Load and transform image."""
|
206 |
+
image = replace_background_with_white(
|
207 |
+
image_path, self.image_folder,
|
208 |
+
remove_bg=self.config.remove_bg
|
209 |
+
)
|
210 |
+
return self.transform(image)
|
211 |
+
|
212 |
+
# ----------------------------
|
213 |
+
# Image Processing
|
214 |
+
# ----------------------------
|
215 |
+
def estimate_background_color_pil(image: Image.Image, border_width: int = 10,
|
216 |
+
method: str = "median") -> np.ndarray:
|
217 |
+
"""Estimate background color from image borders."""
|
218 |
+
if image.mode != 'RGB':
|
219 |
+
image = image.convert('RGB')
|
220 |
+
|
221 |
+
np_img = np.array(image)
|
222 |
+
h, w, _ = np_img.shape
|
223 |
+
|
224 |
+
# Extract border pixels
|
225 |
+
top = np_img[:border_width, :, :].reshape(-1, 3)
|
226 |
+
bottom = np_img[-border_width:, :, :].reshape(-1, 3)
|
227 |
+
left = np_img[:, :border_width, :].reshape(-1, 3)
|
228 |
+
right = np_img[:, -border_width:, :].reshape(-1, 3)
|
229 |
+
|
230 |
+
all_border_pixels = np.concatenate([top, bottom, left, right], axis=0)
|
231 |
+
|
232 |
+
if method == "mean":
|
233 |
+
return np.mean(all_border_pixels, axis=0).astype(np.uint8)
|
234 |
+
else:
|
235 |
+
return np.median(all_border_pixels, axis=0).astype(np.uint8)
|
236 |
+
|
237 |
+
def replace_background_with_white(image_name: str, folder_img: str,
|
238 |
+
tolerance: int = 40, method: str = "median",
|
239 |
+
remove_bg: bool = False) -> Image.Image:
|
240 |
+
"""Replace background with white based on border color estimation."""
|
241 |
+
image_path = os.path.join(folder_img, image_name)
|
242 |
+
image = Image.open(image_path).convert("RGB")
|
243 |
+
|
244 |
+
if not remove_bg:
|
245 |
+
return image
|
246 |
+
|
247 |
+
np_img = np.array(image)
|
248 |
+
bg_color = estimate_background_color_pil(image, method=method)
|
249 |
+
|
250 |
+
# Create mask for background pixels
|
251 |
+
diff = np.abs(np_img.astype(np.int32) - bg_color.astype(np.int32))
|
252 |
+
mask = np.all(diff < tolerance, axis=2)
|
253 |
+
|
254 |
+
# Replace background with white
|
255 |
+
result = np_img.copy()
|
256 |
+
result[mask] = [255, 255, 255]
|
257 |
+
|
258 |
+
return Image.fromarray(result)
|
259 |
+
|
260 |
+
# ----------------------------
|
261 |
+
# Main Prediction Class
|
262 |
+
# ----------------------------
|
263 |
+
class SignatureVerifier:
|
264 |
+
"""Main class for signature verification predictions."""
|
265 |
+
|
266 |
+
def __init__(self, config: InferenceConfig = CONFIG):
|
267 |
+
self.config = config
|
268 |
+
self.device = torch.device(config.device)
|
269 |
+
self.model = self._load_model()
|
270 |
+
self.transform = self._get_transforms()
|
271 |
+
|
272 |
+
def _get_transforms(self) -> transforms.Compose:
|
273 |
+
"""Get image transforms."""
|
274 |
+
return transforms.Compose([
|
275 |
+
transforms.Resize((224, 224)),
|
276 |
+
transforms.ToTensor(),
|
277 |
+
transforms.Normalize(
|
278 |
+
mean=[0.485, 0.456, 0.406],
|
279 |
+
std=[0.229, 0.224, 0.225]
|
280 |
+
)
|
281 |
+
])
|
282 |
+
|
283 |
+
def _load_model(self) -> SiameseSignatureNetwork:
|
284 |
+
"""Load model from checkpoint."""
|
285 |
+
print(f"Loading model from: {self.config.checkpoint_path}")
|
286 |
+
|
287 |
+
# Initialize model
|
288 |
+
model = SiameseSignatureNetwork(self.config)
|
289 |
+
|
290 |
+
# Load checkpoint
|
291 |
+
checkpoint = torch.load(self.config.checkpoint_path, map_location=self.device, weights_only=False)
|
292 |
+
|
293 |
+
# Load model state
|
294 |
+
if 'model_state_dict' in checkpoint:
|
295 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
296 |
+
else:
|
297 |
+
# If checkpoint is just the state dict
|
298 |
+
model.load_state_dict(checkpoint)
|
299 |
+
|
300 |
+
# Load threshold if available
|
301 |
+
if 'prediction_threshold' in checkpoint:
|
302 |
+
model.distance_threshold = checkpoint['prediction_threshold']
|
303 |
+
print(f"Loaded threshold: {model.distance_threshold:.4f}")
|
304 |
+
|
305 |
+
# Load best EER if available
|
306 |
+
if 'best_eer' in checkpoint:
|
307 |
+
print(f"Model best EER: {checkpoint['best_eer']:.4f}")
|
308 |
+
|
309 |
+
model = model.to(self.device)
|
310 |
+
model.eval()
|
311 |
+
|
312 |
+
print("Model loaded successfully!")
|
313 |
+
return model
|
314 |
+
|
315 |
+
def predict_single_pair(self, image1_path: str, image2_path: str,
|
316 |
+
image_folder: str = "") -> Dict[str, float]:
|
317 |
+
"""Predict similarity for a single pair of images."""
|
318 |
+
# Load images
|
319 |
+
img1 = replace_background_with_white(
|
320 |
+
image1_path, image_folder, remove_bg=self.config.remove_bg
|
321 |
+
)
|
322 |
+
img2 = replace_background_with_white(
|
323 |
+
image2_path, image_folder, remove_bg=self.config.remove_bg
|
324 |
+
)
|
325 |
+
|
326 |
+
# Transform
|
327 |
+
img1_tensor = self.transform(img1).unsqueeze(0).to(self.device)
|
328 |
+
img2_tensor = self.transform(img2).unsqueeze(0).to(self.device)
|
329 |
+
|
330 |
+
# Predict
|
331 |
+
results = self.model.predict_pair(img1_tensor, img2_tensor)
|
332 |
+
|
333 |
+
return {
|
334 |
+
'is_genuine': bool(results['predictions'].item()),
|
335 |
+
'distance': float(results['distances'].item()),
|
336 |
+
'similarity_score': float(results['similarities'].item()),
|
337 |
+
'threshold': float(results['threshold'].item())
|
338 |
+
}
|
339 |
+
|
340 |
+
def predict_from_excel(self, excel_path: str, image_folder: str,
|
341 |
+
output_path: Optional[str] = None) -> pd.DataFrame:
|
342 |
+
"""Batch prediction from Excel file."""
|
343 |
+
# Create dataset and dataloader
|
344 |
+
dataset = PredictionDataset(excel_path, image_folder, self.config)
|
345 |
+
dataloader = DataLoader(
|
346 |
+
dataset,
|
347 |
+
batch_size=self.config.batch_size,
|
348 |
+
shuffle=False,
|
349 |
+
num_workers=self.config.num_workers,
|
350 |
+
pin_memory=True
|
351 |
+
)
|
352 |
+
|
353 |
+
# Prediction storage
|
354 |
+
all_predictions = []
|
355 |
+
all_distances = []
|
356 |
+
all_similarities = []
|
357 |
+
|
358 |
+
# Predict in batches
|
359 |
+
print(f"Processing {len(dataset)} pairs...")
|
360 |
+
with torch.no_grad():
|
361 |
+
for img1_batch, img2_batch, indices in tqdm(dataloader):
|
362 |
+
img1_batch = img1_batch.to(self.device)
|
363 |
+
img2_batch = img2_batch.to(self.device)
|
364 |
+
|
365 |
+
results = self.model.predict_pair(img1_batch, img2_batch)
|
366 |
+
|
367 |
+
all_predictions.extend(results['predictions'].cpu().numpy())
|
368 |
+
all_distances.extend(results['distances'].cpu().numpy())
|
369 |
+
all_similarities.extend(results['similarities'].cpu().numpy())
|
370 |
+
|
371 |
+
# Create results dataframe
|
372 |
+
results_df = dataset.data.copy()
|
373 |
+
results_df['prediction'] = all_predictions
|
374 |
+
results_df['is_genuine'] = results_df['prediction'].astype(bool)
|
375 |
+
results_df['distance'] = all_distances
|
376 |
+
results_df['similarity_score'] = all_similarities
|
377 |
+
results_df['threshold'] = self.model.distance_threshold
|
378 |
+
|
379 |
+
# Save if output path provided
|
380 |
+
if output_path:
|
381 |
+
results_df.to_excel(output_path, index=False)
|
382 |
+
print(f"Results saved to: {output_path}")
|
383 |
+
|
384 |
+
return results_df
|
385 |
+
|
386 |
+
def update_threshold(self, new_threshold: float):
|
387 |
+
"""Update the decision threshold."""
|
388 |
+
self.model.distance_threshold = new_threshold
|
389 |
+
print(f"Threshold updated to: {new_threshold:.4f}")
|
390 |
+
|
391 |
+
# Initialize verifier
|
392 |
+
config = InferenceConfig(
|
393 |
+
checkpoint_path="../../../../model/models_checkpoints/fa7e1bdc01814016ac8220bfbf1eb691/best_model.pth",
|
394 |
+
batch_size=32,
|
395 |
+
device="cuda" if torch.cuda.is_available() else "cpu"
|
396 |
+
)
|
397 |
+
|
398 |
+
verifier = SignatureVerifier(config)
|
399 |
+
|
400 |
+
'''
|
401 |
+
# Example 1: Single pair prediction
|
402 |
+
print("\n--- Single Pair Prediction ---")
|
403 |
+
result = verifier.predict_single_pair(
|
404 |
+
image1_path="sig1.png",
|
405 |
+
image2_path="sig2.png",
|
406 |
+
image_folder="../../data/classify/preprared_data/images/"
|
407 |
+
)
|
408 |
+
'''
|
409 |
+
|
410 |
+
# Example 2: Batch prediction from Excel
|
411 |
+
print("\n--- Batch Prediction from Excel ---")
|
412 |
+
results_df = verifier.predict_from_excel(
|
413 |
+
excel_path="../../../../data/classify/preprared_data/labels/test_pairs_balanced_v12.xlsx",
|
414 |
+
image_folder="../../../../data/classify/preprared_data/images/",
|
415 |
+
output_path="./predictions_output.xlsx"
|
416 |
+
)
|
417 |
+
|
418 |
+
# Print summary
|
419 |
+
genuine_count = results_df['is_genuine'].sum()
|
420 |
+
total_count = len(results_df)
|
421 |
+
print(f"\nPrediction Summary:")
|
422 |
+
print(f"Total pairs: {total_count}")
|
423 |
+
print(f"Genuine predictions: {genuine_count} ({100*genuine_count/total_count:.1f}%)")
|
424 |
+
print(f"Forged predictions: {total_count - genuine_count} ({100*(total_count-genuine_count)/total_count:.1f}%)")
|