File size: 2,036 Bytes
0bf81ad
 
c8cb8d7
 
 
 
 
 
cccb915
0bf81ad
 
c8cb8d7
 
0bf81ad
c8cb8d7
0bf81ad
c8cb8d7
0bf81ad
c8cb8d7
0bf81ad
c8cb8d7
231a56c
0bf81ad
231a56c
 
 
 
 
c8cb8d7
0bf81ad
c8cb8d7
0bf81ad
c8cb8d7
0bf81ad
c8cb8d7
0bf81ad
c8cb8d7
0bf81ad
c8cb8d7
0bf81ad
c8cb8d7
 
41db283
c8cb8d7
 
 
 
 
 
41db283
c8cb8d7
 
 
0bf81ad
 
c8cb8d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bf81ad
 
 
 
 
c8cb8d7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
library_name: peft
tags:
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-70B-Instruct
model-index:
- name: lora_Meta-Llama-3-70B_derta
  results: []
license: apache-2.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lora_Meta-Llama-3-70B_derta

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) on the [Evol-Instruct](https://huggingface.co/datasets/WizardLMTeam/WizardLM_evol_instruct_70k) and [BeaverTails](https://huggingface.co/datasets/PKU-Alignment/BeaverTails) dataset.

## Model description

Please refer to the paper [Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training](https://arxiv.org/abs/2407.09121) and GitHub [DeRTa](https://github.com/RobustNLP/DeRTa).
The model is continued train 100 steps with DeRTa on LLaMA3-70B-Instruct.


Input format:
```
[INST] Your Instruction [\INST]
```
## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 1
- seed: 1
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2.0


The lora config is:
```
{
  "lora_r": 96,
  "lora_alpha": 16,
  "lora_dropout": 0.05,
  "lora_target_modules": [
    "q_proj",
    "v_proj",
    "k_proj",
    "o_proj",
    "gate_proj",
    "down_proj",
    "up_proj",
    "w1",
    "w2",
    "w3"
  ]
}
```
### Training results



### Framework versions

- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.2.0+cu118
- Datasets 2.10.0
- Tokenizers 0.19.1