File size: 1,580 Bytes
d3b730c
99ccd0b
d3b730c
 
7fbf33b
 
d3b730c
 
 
 
 
 
 
 
 
 
99ccd0b
9a6da49
dc1d8c2
 
 
d3b730c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b519c7a
7fbf33b
dc1d8c2
d3b730c
b519c7a
d3b730c
 
f892cae
d3b730c
7fbf33b
 
 
 
dc1d8c2
 
7fbf33b
 
d3b730c
 
e527339
ad48f05
e527339
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
base_model: aubmindlab/bert-large-arabertv2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: arabert-sentiment-classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# arabert-sentiment-classification

This model is a fine-tuned version of [aubmindlab/bert-large-arabertv2](https://huggingface.co/aubmindlab/bert-large-arabertv2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5849
- Macro F1: 0.6310
- Accuracy: 0.7822

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Macro F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
| No log        | 1.0   | 497  | 0.6328          | 0.5838   | 0.7719   |
| 0.7505        | 2.0   | 994  | 0.5849          | 0.6310   | 0.7822   |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Tokenizers 0.14.1