--- tags: - spacy - token-classification language: - fr model-index: - name: fr_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8045454545 - name: NER Recall type: recall value: 0.7564102564 - name: NER F Score type: f_score value: 0.7797356828 --- | Feature | Description | | --- | --- | | **Name** | `fr_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.4,<3.5.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme
View label scheme (8 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `EMOTICON`, `GOVERNING ENTITY`, `HASHTAG`, `LINK`, `NUMBERS/METRICS`, `QUESTION`, `REFERENCE`, `TAG` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 77.97 | | `ENTS_P` | 80.45 | | `ENTS_R` | 75.64 | | `TOK2VEC_LOSS` | 9744.43 | | `NER_LOSS` | 4349.46 |