YoussefSaad
commited on
Commit
·
1d23509
1
Parent(s):
0b68a59
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: dresses
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: default
|
19 |
+
split: train
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.9013840830449827
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# dresses
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.4588
|
35 |
+
- Accuracy: 0.9014
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 0.0002
|
55 |
+
- train_batch_size: 64
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 15
|
61 |
+
- mixed_precision_training: Native AMP
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 0.2458 | 1.23 | 100 | 0.4519 | 0.8633 |
|
68 |
+
| 0.0937 | 2.47 | 200 | 0.4285 | 0.8754 |
|
69 |
+
| 0.0802 | 3.7 | 300 | 0.4683 | 0.8754 |
|
70 |
+
| 0.041 | 4.94 | 400 | 0.4088 | 0.9031 |
|
71 |
+
| 0.0277 | 6.17 | 500 | 0.3979 | 0.8945 |
|
72 |
+
| 0.0459 | 7.41 | 600 | 0.4253 | 0.9014 |
|
73 |
+
| 0.024 | 8.64 | 700 | 0.4680 | 0.8893 |
|
74 |
+
| 0.0267 | 9.88 | 800 | 0.4575 | 0.8945 |
|
75 |
+
| 0.019 | 11.11 | 900 | 0.4470 | 0.8893 |
|
76 |
+
| 0.0235 | 12.35 | 1000 | 0.4380 | 0.9066 |
|
77 |
+
| 0.0129 | 13.58 | 1100 | 0.4557 | 0.9048 |
|
78 |
+
| 0.0211 | 14.81 | 1200 | 0.4588 | 0.9014 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.23.1
|
84 |
+
- Pytorch 1.12.1+cu113
|
85 |
+
- Datasets 2.6.1
|
86 |
+
- Tokenizers 0.13.1
|