File size: 2,823 Bytes
a47fc16
 
fb89161
 
 
 
 
 
 
 
2520e39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb89161
 
 
 
 
 
 
 
 
 
 
 
2520e39
fb89161
 
a47fc16
 
fb89161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2520e39
fb89161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c56221
fb89161
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
tags:
- Diffusion
- Data Generation
language: en
task: Data generation for computer vision tasks
datasets: MNIST
metrics:
  epoch: 31
  train_loss:
  - 0.0908
  - 0.0245
  - 0.0209
  - 0.0194
  - 0.0185
  - 0.0178
  - 0.0172
  - 0.0169
  - 0.0167
  - 0.0161
  - 0.0161
  - 0.0159
  - 0.0158
  - 0.0154
  - 0.0155
  - 0.0154
  - 0.0152
  - 0.0151
  - 0.015
  - 0.0152
  - 0.0151
  - 0.0148
  - 0.0148
  - 0.0148
  - 0.0147
  - 0.0146
  - 0.0147
  - 0.0145
  - 0.0146
  - 0.0146
  - 0.0146
license: unknown
model-index:
- name: diffusion-practice-v1
  results:
  - task:
      type: nlp
      name: Data Generation with Diffusion Model
    dataset:
      name: MNIST
      type: mnist
    metrics:
    - type: loss
      value: '0.01'
      name: Loss
      verified: false
---

# NLI-FEVER Model

This model is fine-tuned for Natural Language Inference (NLI) tasks using the FEVER dataset.

## Model description

## Intended uses & limitations

This model is intended for use in NLI tasks, particularly those related to fact-checking and verifying information.
It should not be used for tasks it wasn't explicitly trained for.

## Training and evaluation data

The model was trained on the FEVER (Fact Extraction and VERification) dataset.

## Training procedure

The model was trained for 31 epochs
Train Losses of [0.0908, 0.0245, 0.0209, 0.0194, 0.0185, 0.0178, 0.0172, 0.0169, 0.0167, 0.0161, 0.0161, 0.0159, 0.0158, 0.0154, 0.0155, 0.0154, 0.0152, 0.0151, 0.015, 0.0152, 0.0151, 0.0148, 0.0148, 0.0148, 0.0147, 0.0146, 0.0147, 0.0145, 0.0146, 0.0146, 0.0146].

## How to use

You can use this model directly with a pipeline for text classification:

```python
from transformers import pipeline

classifier = pipeline("text-classification", model="YusuphaJuwara/nli-fever")
result = classifier("premise", "hypothesis")
print(result)
```

## Saved Metrics

This model repository includes a `metrics.json` file containing detailed training metrics.
You can load these metrics using the following code:

```python
from huggingface_hub import hf_hub_download
import json

metrics_file = hf_hub_download(repo_id="YusuphaJuwara/nli-fever", filename="metrics.json")
with open(metrics_file, 'r') as f:
metrics = json.load(f)

# Now you can access metrics like:
print("Last epoch: ", metrics['last_epoch'])
print("Final validation loss: ", metrics['val_losses'][-1])
print("Final validation accuracy: ", metrics['val_accuracies'][-1])
```

These metrics can be useful for continuing training from the last epoch or for detailed analysis of the training process.

## Training results
![Include a plot of your training metrics here](loss_plot.png)

Limitations and bias
## This model may exhibit biases present in the training data. Always validate results and use the model responsibly.

## Plots
![loss plots](loss_plot.png)