--- tags: - Diffusion - Data Generation language: en task: Data generation for computer vision tasks datasets: MNIST metrics: epoch: 31 train_loss: - 0.012500390410423279 - 0.018069975078105927 - 0.01557229831814766 - 0.011175226420164108 - 0.011422666721045971 - 0.011030735448002815 - 0.01722785457968712 - 0.01321368757635355 - 0.014989392831921577 - 0.012408463284373283 - 0.012982162646949291 - 0.012269439175724983 - 0.018606187775731087 - 0.011797977611422539 - 0.013769544661045074 - 0.01915244199335575 - 0.0198991522192955 - 0.01421719416975975 - 0.015622736886143684 - 0.015983033925294876 - 0.01271776296198368 - 0.012229482643306255 - 0.014163941144943237 - 0.008050181902945042 - 0.013724284246563911 - 0.01594972051680088 - 0.015842918306589127 - 0.012332979589700699 - 0.013316147960722446 - 0.016753198578953743 - 0.018078463152050972 - 0.011557980440557003 - 0.01905280351638794 - 0.016684118658304214 - 0.021189577877521515 - 0.010320262052118778 - 0.008208866231143475 - 0.01250820979475975 - 0.009428021498024464 - 0.014835948124527931 - 0.010922946035861969 - 0.008658873848617077 - 0.014398415572941303 - 0.013922883197665215 - 0.014133173041045666 - 0.0137161985039711 - 0.012090680189430714 - 0.00903268437832594 - 0.016538694500923157 - 0.014723376370966434 - 0.0204552561044693 - 0.015987979248166084 - 0.014970067888498306 - 0.016475357115268707 - 0.009851738810539246 - 0.012088905088603497 - 0.01394227147102356 - 0.01911313459277153 - 0.01720532588660717 - 0.01011113915592432 - 0.016070090234279633 - 0.01286860927939415 - 0.010800359770655632 - 0.018871422857046127 - 0.017360053956508636 - 0.012354780919849873 - 0.014815042726695538 - 0.01634497568011284 - 0.014166302978992462 - 0.013879853300750256 - 0.015462606213986874 - 0.014395294710993767 - 0.013415094465017319 - 0.017361704260110855 - 0.022730628028512 - 0.019179662689566612 - 0.01538906991481781 - 0.01689712330698967 - 0.014173322357237339 - 0.016447672620415688 - 0.016224035993218422 - 0.011868116445839405 - 0.011229836381971836 - 0.015438197180628777 - 0.011133636347949505 - 0.019798457622528076 - 0.009183727204799652 - 0.010742711834609509 - 0.013675445690751076 - 0.015319681726396084 - 0.019023019820451736 - 0.01536570768803358 - 0.013355547562241554 - 0.013258677907288074 - 0.013030248694121838 - 0.02038641646504402 - 0.014223167672753334 - 0.012503362260758877 - 0.01468811184167862 - 0.012919282540678978 - 0.01661737635731697 - 0.015320247039198875 - 0.009521886706352234 - 0.0160747691988945 - 0.018008258193731308 - 0.009128890000283718 - 0.01458145771175623 - 0.017568770796060562 - 0.011233637109398842 - 0.010927395895123482 - 0.01802142523229122 - 0.012866715900599957 - 0.015610776841640472 - 0.016290904954075813 - 0.011617541313171387 - 0.011034378781914711 - 0.01265735737979412 - 0.016206752508878708 - 0.009083349257707596 - 0.017467845231294632 - 0.018709266558289528 - 0.010459166951477528 - 0.017442626878619194 - 0.0138699347153306 - 0.01376175507903099 - 0.012638181447982788 - 0.01407952792942524 - 0.012644464150071144 - 0.012577432207763195 - 0.017796356230974197 - 0.022363992407917976 - 0.015493701212108135 - 0.01852770522236824 - 0.013877637684345245 - 0.013712205924093723 - 0.016337666660547256 - 0.014563423581421375 - 0.01214816328138113 - 0.01252936664968729 - 0.011547367088496685 - 0.025153661146759987 - 0.013209288008511066 - 0.021104024723172188 - 0.016292480751872063 - 0.01349037978798151 - 0.013808746822178364 - 0.015713930130004883 - 0.010566401295363903 - 0.014139804057776928 - 0.014177471399307251 - 0.021992415189743042 - 0.014011572115123272 - 0.012662430293858051 - 0.01354279275983572 - 0.01183310803025961 - 0.011557163670659065 - 0.018170589581131935 - 0.019278690218925476 - 0.011254314333200455 - 0.014980996958911419 - 0.013449438847601414 - 0.01447439193725586 - 0.016014492139220238 - 0.016562489792704582 - 0.013805449940264225 - 0.015728330239653587 - 0.015200217254459858 - 0.018228529021143913 - 0.01557118073105812 - 0.013306801207363605 - 0.014975111931562424 - 0.016754161566495895 - 0.008712736889719963 - 0.012341953814029694 - 0.00909721665084362 - 0.01506368163973093 - 0.013311614282429218 - 0.013187235221266747 - 0.01195317879319191 - 0.016609294340014458 - 0.012328213080763817 - 0.019970685243606567 - 0.010791159234941006 - 0.010457925498485565 - 0.019264720380306244 - 0.013338018208742142 - 0.015275085344910622 - 0.014047378674149513 - 0.012430302798748016 - 0.01978289894759655 - 0.012688261456787586 - 0.014581275172531605 - 0.01226853858679533 - 0.01145477220416069 - 0.012991245836019516 - 0.017462769523262978 - 0.014746040105819702 - 0.016553938388824463 - 0.015692859888076782 - 0.02018333598971367 - 0.021753504872322083 - 0.01091365609318018 - 0.015666624531149864 - 0.01628458872437477 - 0.009068261831998825 - 0.014268042519688606 - 0.014044552110135555 - 0.01937422901391983 - 0.011380874551832676 - 0.015245005488395691 - 0.009955769404768944 - 0.00937621109187603 - 0.016217781230807304 - 0.015272446908056736 - 0.010579166002571583 - 0.01540930476039648 - 0.01956574246287346 - 0.017117032781243324 - 0.014609473757445812 - 0.015249855816364288 - 0.013969109393656254 - 0.016458660364151 - 0.019935764372348785 - 0.014324553310871124 - 0.012000830844044685 - 0.011455927044153214 - 0.020443733781576157 - 0.014988444745540619 - 0.013936980627477169 - 0.014301478862762451 - 0.020448535680770874 - 0.017856638878583908 - 0.01790127158164978 - 0.015131808817386627 - 0.015994997695088387 - 0.014635525643825531 - 0.01619793102145195 - 0.01316886954009533 - 0.01448199711740017 - 0.01438452210277319 - 0.014394260011613369 - 0.017850931733846664 - 0.012320213951170444 - 0.015378858894109726 - 0.0166984423995018 - 0.013006545603275299 - 0.012196280062198639 - 0.01352850254625082 - 0.01028085220605135 - 0.015277210623025894 - 0.014955978840589523 - 0.015831056982278824 - 0.017085328698158264 - 0.015904994681477547 - 0.014012668281793594 - 0.01469440571963787 - 0.01500703115016222 - 0.017441773787140846 - 0.011682551354169846 - 0.01724294200539589 - 0.011692560277879238 - 0.011500769294798374 - 0.011224871501326561 - 0.02216491289436817 - 0.017378490418195724 - 0.012778590433299541 - 0.02049909345805645 - 0.016999676823616028 - 0.010795172303915024 - 0.01946471817791462 - 0.016407044604420662 - 0.013851411640644073 - 0.01598232425749302 - 0.013149711303412914 - 0.011754576116800308 - 0.01512159314006567 - 0.014205302111804485 - 0.017780819907784462 - 0.01381493080407381 - 0.009711642749607563 - 0.015415901318192482 - 0.012492036446928978 - 0.010749353095889091 - 0.012266331352293491 - 0.01142844557762146 - 0.013128018006682396 - 0.01690649800002575 - 0.01361688319593668 - 0.012279100716114044 - 0.017649170011281967 - 0.012768285349011421 - 0.010936972685158253 - 0.011346515268087387 - 0.009717716835439205 - 0.013304824009537697 - 0.01073551643639803 - 0.012489685788750648 - 0.008835752494633198 - 0.01032152958214283 - 0.015032551251351833 - 0.014762643724679947 - 0.019424695521593094 - 0.0166291743516922 - 0.013621236197650433 - 0.015185484662652016 - 0.01782071590423584 - 0.016899744048714638 - 0.01250534225255251 - 0.015176388435065746 - 0.01404096744954586 - 0.012979825027287006 - 0.017369333654642105 - 0.014059428125619888 - 0.010016560554504395 - 0.012857497669756413 - 0.014425350353121758 - 0.016379641368985176 - 0.011913311667740345 - 0.011506187729537487 - 0.018163470551371574 - 0.02317049913108349 - 0.017137479037046432 - 0.013830004259943962 - 0.01325614657253027 - 0.014683479443192482 - 0.020898759365081787 - 0.018543584272265434 - 0.010288338176906109 - 0.012347479350864887 - 0.016912052407860756 - 0.015330049209296703 - 0.008611593395471573 - 0.016592897474765778 - 0.011282555758953094 - 0.017860228195786476 - 0.01403068471699953 - 0.011546576395630836 - 0.018753554672002792 - 0.01389843039214611 - 0.010337942279875278 - 0.013481983914971352 - 0.008653232827782631 - 0.015309644863009453 - 0.012722794897854328 - 0.009820464067161083 - 0.017464032396674156 - 0.015346076339483261 - 0.016895940527319908 - 0.013173759914934635 - 0.01425919495522976 - 0.021844277158379555 - 0.015109154395759106 - 0.01628500036895275 - 0.01799626275897026 - 0.014236447401344776 - 0.010727942921221256 - 0.01539785135537386 - 0.013255581259727478 - 0.015202918089926243 - 0.013061491772532463 - 0.014628848060965538 - 0.015355324372649193 - 0.01686476171016693 - 0.01241341419517994 - 0.013730633072555065 - 0.01065946463495493 - 0.016072649508714676 - 0.01506964210420847 - 0.013856442645192146 - 0.014702158980071545 - 0.02180640585720539 - 0.011076646856963634 - 0.01568189263343811 - 0.013341635465621948 - 0.01635587587952614 - 0.01412407960742712 - 0.012502975761890411 - 0.0131705142557621 - 0.0141450185328722 - 0.01303964201360941 - 0.01616821624338627 - 0.027395149692893028 - 0.011723450385034084 - 0.01753467321395874 - 0.011598652228713036 - 0.015621163882315159 - 0.009112779051065445 - 0.013413254171609879 - 0.01685653254389763 - 0.018918411806225777 - 0.01677645742893219 - 0.01033798884600401 - 0.0159732848405838 - 0.010532347485423088 - 0.016760479658842087 - 0.01786953955888748 - 0.012173616327345371 - 0.016448764130473137 - 0.015083465725183487 - 0.015392953529953957 - 0.013732904568314552 - 0.011471048928797245 - 0.014893777668476105 - 0.011794153600931168 - 0.018478697165846825 - 0.012143145315349102 - 0.010517273098230362 - 0.017898546531796455 - 0.01423246692866087 - 0.014084283262491226 - 0.015336374752223492 - 0.011585851199924946 - 0.016332264989614487 - 0.0153045654296875 - 0.016788695007562637 - 0.01286937016993761 - 0.02037760056555271 - 0.011611132882535458 - 0.010130283422768116 - 0.0161350816488266 - 0.016042033210396767 - 0.013727082870900631 - 0.014947396703064442 - 0.014458208344876766 - 0.01631142571568489 - 0.01504430454224348 - 0.012390749529004097 - 0.020528914406895638 - 0.010608320124447346 - 0.013837313279509544 - 0.01490450743585825 - 0.010124126449227333 - 0.010478144511580467 - 0.01268378458917141 - 0.015946978703141212 - 0.01167976949363947 - 0.013557025231420994 - 0.015001761727035046 - 0.015831850469112396 - 0.015655647963285446 - 0.014396104961633682 - 0.009965553879737854 - 0.01509483065456152 - 0.020063383504748344 - 0.012368099763989449 - 0.018457021564245224 - 0.015992755070328712 - 0.016845669597387314 - 0.01595737226307392 - 0.012677187100052834 - 0.018416712060570717 - 0.011307275854051113 - 0.012258880771696568 - 0.019921597093343735 - 0.016651298850774765 - 0.013102871365845203 - 0.02221229113638401 - 0.008991380222141743 - 0.01488400436937809 - 0.015945928171277046 - 0.01041024923324585 - 0.010955617763102055 - 0.020051058381795883 - 0.01490097027271986 - 0.017966147512197495 - 0.01741086132824421 - 0.014622400514781475 - 0.018726281821727753 - 0.01733509823679924 - 0.009478745050728321 - 0.012382066808640957 - 0.013415890745818615 - 0.014557731337845325 - 0.014050627127289772 - 0.012596054933965206 - 0.019661512225866318 - 0.014422854408621788 - 0.013274822384119034 - 0.012946329079568386 - 0.008257672190666199 - 0.01135559007525444 - 0.01647154800593853 - 0.0117330988869071 - 0.012826125137507915 - 0.016141705214977264 - 0.01530689187347889 - 0.01820262148976326 - 0.009850570000708103 - 0.01373992022126913 - 0.017330370843410492 - 0.018638577312231064 - 0.01217627339065075 - 0.00660079438239336 - 0.01356660295277834 - 0.015052447095513344 - 0.009135265834629536 - 0.016830384731292725 - 0.01853279024362564 - 0.01559709757566452 - 0.016899244859814644 - 0.011738214641809464 - 0.01591837778687477 - 0.016962654888629913 - 0.01527174562215805 - 0.016522208228707314 - 0.017129668965935707 - 0.01832699403166771 - 0.015176906250417233 - 0.015600481070578098 - 0.014799575321376324 - 0.011876239441335201 - 0.01335948333144188 - 0.0120448162779212 - 0.016566826030611992 - 0.011407301761209965 - 0.015779387205839157 - 0.010502167046070099 - 0.018208865076303482 - 0.013931947760283947 - 0.01145635824650526 - 0.013102215714752674 - 0.016424985602498055 - 0.014568166807293892 - 0.022760391235351562 - 0.015271005220711231 - 0.014421438798308372 - 0.014142326079308987 - 0.009594016708433628 - 0.014425178989768028 - 0.012880784459412098 - 0.016748469322919846 - 0.01263733021914959 - 0.017088918015360832 - 0.014669991098344326 - 0.012049775570631027 - 0.01325497031211853 - 0.014062711037695408 - 0.013722964562475681 - 0.013414431363344193 - 0.01594829559326172 - 0.012433752417564392 - 0.01619742065668106 - 0.010082099586725235 - 0.014123230241239071 - 0.01637980528175831 - 0.011360175907611847 - 0.01558392122387886 - 0.014541635289788246 - 0.012587002478539944 - 0.01655775122344494 - 0.012013290077447891 - 0.012647728435695171 - 0.014712546020746231 - 0.01882333680987358 - 0.015221410430967808 - 0.01846608705818653 - 0.01428438164293766 - 0.013551177456974983 - 0.008066447451710701 - 0.018927153199911118 - 0.010646138340234756 - 0.01277433056384325 - 0.012758995406329632 - 0.021756906062364578 - 0.014570842497050762 - 0.01671837456524372 - 0.01431433018296957 - 0.022064141929149628 - 0.01267344132065773 - 0.014434619806706905 - 0.017035478726029396 - 0.012003124691545963 - 0.013976288959383965 - 0.009266224689781666 - 0.013222889043390751 - 0.01377180963754654 - 0.00968968402594328 - 0.013419240713119507 - 0.013709194958209991 - 0.01677161268889904 - 0.011792252771556377 - 0.010083544068038464 - 0.015731321647763252 - 0.02191142551600933 - 0.01390788983553648 - 0.012947751209139824 - 0.01912374421954155 - 0.013384324498474598 - 0.014505098573863506 - 0.014032591134309769 - 0.014775828458368778 - 0.009765076451003551 - 0.013791763223707676 - 0.015724776312708855 - 0.021244242787361145 - 0.015458043664693832 - 0.017467470839619637 - 0.010941826738417149 - 0.01075274683535099 - 0.011764061637222767 - 0.01584858074784279 - 0.008800896815955639 - 0.013610991649329662 - 0.011358614079654217 - 0.012525786645710468 - 0.013234782963991165 - 0.013011809438467026 - 0.018107913434505463 - 0.011420052498579025 - 0.008347764611244202 - 0.01437180582433939 - 0.02066621743142605 - 0.015165334567427635 - 0.014673634432256222 - 0.01311960257589817 - 0.009328260086476803 - 0.01484586950391531 - 0.016441240906715393 - 0.015654293820261955 - 0.014438912272453308 - 0.017710749059915543 - 0.020336929708719254 - 0.011782918125391006 - 0.015070459805428982 - 0.016157042235136032 - 0.016717659309506416 - 0.016222666949033737 - 0.01820269785821438 - 0.01286607701331377 - 0.0178490299731493 - 0.017478855326771736 - 0.01640363410115242 - 0.0099756745621562 - 0.012854414992034435 - 0.021975794807076454 - 0.015340619720518589 - 0.012645842507481575 - 0.01218426413834095 - 0.013190841302275658 - 0.015230604447424412 - 0.011415773071348667 - 0.01037532277405262 - 0.01253659836947918 - 0.013897838070988655 - 0.01772221550345421 - 0.013064291328191757 - 0.01035818737000227 - 0.01278441771864891 - 0.015644853934645653 - 0.015452454797923565 - 0.018725883215665817 - 0.012975317426025867 - 0.01320117712020874 - 0.015939980745315552 - 0.01639075204730034 - 0.015521226450800896 - 0.01205209270119667 - 0.015998398885130882 - 0.013780416920781136 - 0.012997028417885303 - 0.01762467436492443 - 0.01670519821345806 - 0.010127037763595581 - 0.01637844555079937 - 0.016466155648231506 - 0.014608684927225113 - 0.01498111616820097 - 0.012483660131692886 - 0.017399616539478302 - 0.012534985318779945 - 0.013070505112409592 - 0.017571261152625084 - 0.01209427509456873 - 0.01814395934343338 - 0.017550153657794 - 0.012314443476498127 - 0.010998173616826534 - 0.02109103836119175 - 0.01738462597131729 - 0.013113658875226974 - 0.016194576397538185 - 0.010610085912048817 - 0.011428236961364746 - 0.017404699698090553 - 0.015804219990968704 - 0.010673768818378448 - 0.016865327954292297 - 0.021301215514540672 - 0.015392916277050972 - 0.014182613231241703 - 0.015586260706186295 - 0.012192449532449245 - 0.015012845396995544 - 0.014795730821788311 - 0.008837992325425148 - 0.019583728164434433 - 0.012296382337808609 - 0.016704101115465164 - 0.011342233046889305 - 0.01875291019678116 - 0.013534748926758766 - 0.010484077036380768 - 0.016709696501493454 - 0.02026967704296112 - 0.018889877945184708 - 0.011184494011104107 - 0.013710844330489635 - 0.015798643231391907 - 0.014669758267700672 - 0.012740422040224075 - 0.014708010479807854 - 0.014093136414885521 - 0.016439039260149002 - 0.018184982240200043 - 0.014826263301074505 - 0.015509928576648235 - 0.011197634972631931 - 0.013128240592777729 - 0.009616504423320293 - 0.012262402102351189 - 0.011985856108367443 - 0.010589847341179848 - 0.015917079523205757 - 0.016517600044608116 - 0.01084883138537407 - 0.012407276779413223 - 0.015187164768576622 - 0.016869325190782547 - 0.011616604402661324 - 0.010485474020242691 - 0.015483218245208263 - 0.013773779384791851 - 0.013584532774984837 - 0.015648551285266876 - 0.013091053813695908 - 0.013326729647815228 - 0.009597604162991047 - 0.018675295636057854 - 0.01264861598610878 - 0.016226429492235184 - 0.01646386831998825 - 0.011068344116210938 - 0.020796649158000946 - 0.015306961722671986 - 0.015130235813558102 - 0.01549635548144579 - 0.010908747091889381 - 0.012723827734589577 - 0.012509855441749096 - 0.018033862113952637 - 0.015547871589660645 - 0.009537188336253166 - 0.023121781647205353 - 0.013170103542506695 - 0.01585880108177662 - 0.013229482807219028 - 0.007288631517440081 - 0.01707097329199314 - 0.01513536088168621 - 0.019703343510627747 - 0.011827967129647732 - 0.009967836551368237 - 0.017519986256957054 - 0.01665634661912918 - 0.009379362687468529 - 0.014247057028114796 - 0.011713718995451927 - 0.014128623530268669 - 0.013675653375685215 - 0.01707587204873562 - 0.012414313852787018 - 0.014989757910370827 - 0.013943714089691639 - 0.013748149387538433 - 0.013052270747721195 - 0.01300298422574997 - 0.019706057384610176 - 0.01480400562286377 - 0.01646234095096588 - 0.017301546409726143 - 0.014638744294643402 - 0.01850791648030281 - 0.01640193536877632 - 0.012640242464840412 - 0.018352597951889038 - 0.030300000682473183 - 0.012779883109033108 - 0.011741961352527142 - 0.015226610004901886 - 0.016332749277353287 - 0.013549376279115677 - 0.015935519710183144 - 0.011405864730477333 - 0.01874707080423832 - 0.014870061539113522 - 0.010913916863501072 - 0.014660470187664032 - 0.012458679266273975 - 0.01958375610411167 - 0.012640055269002914 - 0.017414558678865433 - 0.014004099182784557 - 0.012971778400242329 - 0.01081143319606781 - 0.012768381275236607 - 0.01389482244849205 - 0.012520692311227322 - 0.018077341839671135 - 0.01499275490641594 - 0.011101393960416317 - 0.014103909954428673 - 0.013872970826923847 - 0.014331432990729809 - 0.014861573465168476 - 0.014450273476541042 - 0.013819247484207153 - 0.013533556833863258 - 0.016206692904233932 - 0.010728534311056137 - 0.016888612881302834 - 0.010294072329998016 - 0.010879532434046268 - 0.015847554430365562 - 0.020770734176039696 - 0.014694488607347012 - 0.013521967455744743 - 0.012475480325520039 - 0.01712561771273613 - 0.013753972016274929 - 0.013639033772051334 - 0.015138082206249237 - 0.01354992389678955 - 0.013690706342458725 - 0.018019115552306175 - 0.015336688607931137 - 0.016499215736985207 - 0.01398784015327692 - 0.01759837567806244 - 0.015683842822909355 - 0.01672546938061714 - 0.017651457339525223 - 0.011682573705911636 - 0.016829203814268112 - 0.011329188011586666 - 0.019133806228637695 - 0.012027577497065067 - 0.01851501688361168 - 0.015858547762036324 - 0.013239435851573944 - 0.015127330087125301 - 0.015513126738369465 - 0.012513062916696072 - 0.012784162536263466 - 0.01279529556632042 - 0.00895454827696085 - 0.015506465919315815 - 0.018299518153071404 - 0.014981277287006378 - 0.017025675624608994 - 0.013293667696416378 - 0.01864805445075035 - 0.013568549416959286 - 0.011024978011846542 - 0.015041633509099483 - 0.018033774569630623 - 0.011937840841710567 - 0.01671656221151352 - 0.01538589783012867 - 0.012053102254867554 - 0.018668193370103836 - 0.020354706794023514 - 0.016743358224630356 - 0.01391089428216219 - 0.015293989330530167 - 0.023151971399784088 - 0.013122860342264175 - 0.02188684418797493 - 0.01313807163387537 - 0.018425580114126205 - 0.013414292596280575 - 0.014503566548228264 - 0.015803944319486618 - 0.013664066791534424 - 0.01513286679983139 - 0.012050402350723743 - 0.013363135978579521 - 0.016910700127482414 - 0.01449190080165863 - 0.015295629389584064 - 0.015075097791850567 - 0.01573590561747551 - 0.016818806529045105 - 0.011715131811797619 - 0.01631290093064308 - 0.015483907423913479 - 0.017703859135508537 - 0.012935066595673561 - 0.01353193074464798 - 0.01306062564253807 - 0.008225490339100361 - 0.010974221862852573 - 0.012016154825687408 - 0.013778380118310452 - 0.01339094340801239 - 0.019603926688432693 - 0.010589775629341602 - 0.012218572199344635 - 0.013044534251093864 - 0.015359696000814438 - 0.019036274403333664 - 0.009616280905902386 - 0.008199301548302174 - 0.011137755587697029 - 0.015002359636127949 - 0.016729341819882393 - 0.011223209090530872 - 0.018046367913484573 - 0.014351882040500641 - 0.013324961066246033 - 0.014842908829450607 - 0.017893830314278603 - 0.013685880228877068 - 0.01861957646906376 - 0.017647158354520798 - 0.015426764264702797 - 0.015257942490279675 - 0.011195267550647259 - 0.01023242250084877 - 0.012450365349650383 - 0.013538938015699387 - 0.017632920295000076 - 0.01405947282910347 - 0.014494639821350574 - 0.013359093107283115 - 0.01265645120292902 - 0.017270056530833244 - 0.01325537171214819 - 0.01678638532757759 license: unknown model-index: - name: diffusion-practice-v1 results: - task: type: nlp name: Data Generation with Diffusion Model dataset: name: MNIST type: mnist metrics: - type: loss value: '0.02' name: Loss verified: false --- # NLI-FEVER Model This model is fine-tuned for Natural Language Inference (NLI) tasks using the FEVER dataset. ## Model description ## Intended uses & limitations This model is intended for use in NLI tasks, particularly those related to fact-checking and verifying information. It should not be used for tasks it wasn't explicitly trained for. ## Training and evaluation data The model was trained on the FEVER (Fact Extraction and VERification) dataset. ## Training procedure The model was trained for 31 epochs Train Losses of [0.012500390410423279, 0.018069975078105927, 0.01557229831814766, 0.011175226420164108, 0.011422666721045971, 0.011030735448002815, 0.01722785457968712, 0.01321368757635355, 0.014989392831921577, 0.012408463284373283, 0.012982162646949291, 0.012269439175724983, 0.018606187775731087, 0.011797977611422539, 0.013769544661045074, 0.01915244199335575, 0.0198991522192955, 0.01421719416975975, 0.015622736886143684, 0.015983033925294876, 0.01271776296198368, 0.012229482643306255, 0.014163941144943237, 0.008050181902945042, 0.013724284246563911, 0.01594972051680088, 0.015842918306589127, 0.012332979589700699, 0.013316147960722446, 0.016753198578953743, 0.018078463152050972, 0.011557980440557003, 0.01905280351638794, 0.016684118658304214, 0.021189577877521515, 0.010320262052118778, 0.008208866231143475, 0.01250820979475975, 0.009428021498024464, 0.014835948124527931, 0.010922946035861969, 0.008658873848617077, 0.014398415572941303, 0.013922883197665215, 0.014133173041045666, 0.0137161985039711, 0.012090680189430714, 0.00903268437832594, 0.016538694500923157, 0.014723376370966434, 0.0204552561044693, 0.015987979248166084, 0.014970067888498306, 0.016475357115268707, 0.009851738810539246, 0.012088905088603497, 0.01394227147102356, 0.01911313459277153, 0.01720532588660717, 0.01011113915592432, 0.016070090234279633, 0.01286860927939415, 0.010800359770655632, 0.018871422857046127, 0.017360053956508636, 0.012354780919849873, 0.014815042726695538, 0.01634497568011284, 0.014166302978992462, 0.013879853300750256, 0.015462606213986874, 0.014395294710993767, 0.013415094465017319, 0.017361704260110855, 0.022730628028512, 0.019179662689566612, 0.01538906991481781, 0.01689712330698967, 0.014173322357237339, 0.016447672620415688, 0.016224035993218422, 0.011868116445839405, 0.011229836381971836, 0.015438197180628777, 0.011133636347949505, 0.019798457622528076, 0.009183727204799652, 0.010742711834609509, 0.013675445690751076, 0.015319681726396084, 0.019023019820451736, 0.01536570768803358, 0.013355547562241554, 0.013258677907288074, 0.013030248694121838, 0.02038641646504402, 0.014223167672753334, 0.012503362260758877, 0.01468811184167862, 0.012919282540678978, 0.01661737635731697, 0.015320247039198875, 0.009521886706352234, 0.0160747691988945, 0.018008258193731308, 0.009128890000283718, 0.01458145771175623, 0.017568770796060562, 0.011233637109398842, 0.010927395895123482, 0.01802142523229122, 0.012866715900599957, 0.015610776841640472, 0.016290904954075813, 0.011617541313171387, 0.011034378781914711, 0.01265735737979412, 0.016206752508878708, 0.009083349257707596, 0.017467845231294632, 0.018709266558289528, 0.010459166951477528, 0.017442626878619194, 0.0138699347153306, 0.01376175507903099, 0.012638181447982788, 0.01407952792942524, 0.012644464150071144, 0.012577432207763195, 0.017796356230974197, 0.022363992407917976, 0.015493701212108135, 0.01852770522236824, 0.013877637684345245, 0.013712205924093723, 0.016337666660547256, 0.014563423581421375, 0.01214816328138113, 0.01252936664968729, 0.011547367088496685, 0.025153661146759987, 0.013209288008511066, 0.021104024723172188, 0.016292480751872063, 0.01349037978798151, 0.013808746822178364, 0.015713930130004883, 0.010566401295363903, 0.014139804057776928, 0.014177471399307251, 0.021992415189743042, 0.014011572115123272, 0.012662430293858051, 0.01354279275983572, 0.01183310803025961, 0.011557163670659065, 0.018170589581131935, 0.019278690218925476, 0.011254314333200455, 0.014980996958911419, 0.013449438847601414, 0.01447439193725586, 0.016014492139220238, 0.016562489792704582, 0.013805449940264225, 0.015728330239653587, 0.015200217254459858, 0.018228529021143913, 0.01557118073105812, 0.013306801207363605, 0.014975111931562424, 0.016754161566495895, 0.008712736889719963, 0.012341953814029694, 0.00909721665084362, 0.01506368163973093, 0.013311614282429218, 0.013187235221266747, 0.01195317879319191, 0.016609294340014458, 0.012328213080763817, 0.019970685243606567, 0.010791159234941006, 0.010457925498485565, 0.019264720380306244, 0.013338018208742142, 0.015275085344910622, 0.014047378674149513, 0.012430302798748016, 0.01978289894759655, 0.012688261456787586, 0.014581275172531605, 0.01226853858679533, 0.01145477220416069, 0.012991245836019516, 0.017462769523262978, 0.014746040105819702, 0.016553938388824463, 0.015692859888076782, 0.02018333598971367, 0.021753504872322083, 0.01091365609318018, 0.015666624531149864, 0.01628458872437477, 0.009068261831998825, 0.014268042519688606, 0.014044552110135555, 0.01937422901391983, 0.011380874551832676, 0.015245005488395691, 0.009955769404768944, 0.00937621109187603, 0.016217781230807304, 0.015272446908056736, 0.010579166002571583, 0.01540930476039648, 0.01956574246287346, 0.017117032781243324, 0.014609473757445812, 0.015249855816364288, 0.013969109393656254, 0.016458660364151, 0.019935764372348785, 0.014324553310871124, 0.012000830844044685, 0.011455927044153214, 0.020443733781576157, 0.014988444745540619, 0.013936980627477169, 0.014301478862762451, 0.020448535680770874, 0.017856638878583908, 0.01790127158164978, 0.015131808817386627, 0.015994997695088387, 0.014635525643825531, 0.01619793102145195, 0.01316886954009533, 0.01448199711740017, 0.01438452210277319, 0.014394260011613369, 0.017850931733846664, 0.012320213951170444, 0.015378858894109726, 0.0166984423995018, 0.013006545603275299, 0.012196280062198639, 0.01352850254625082, 0.01028085220605135, 0.015277210623025894, 0.014955978840589523, 0.015831056982278824, 0.017085328698158264, 0.015904994681477547, 0.014012668281793594, 0.01469440571963787, 0.01500703115016222, 0.017441773787140846, 0.011682551354169846, 0.01724294200539589, 0.011692560277879238, 0.011500769294798374, 0.011224871501326561, 0.02216491289436817, 0.017378490418195724, 0.012778590433299541, 0.02049909345805645, 0.016999676823616028, 0.010795172303915024, 0.01946471817791462, 0.016407044604420662, 0.013851411640644073, 0.01598232425749302, 0.013149711303412914, 0.011754576116800308, 0.01512159314006567, 0.014205302111804485, 0.017780819907784462, 0.01381493080407381, 0.009711642749607563, 0.015415901318192482, 0.012492036446928978, 0.010749353095889091, 0.012266331352293491, 0.01142844557762146, 0.013128018006682396, 0.01690649800002575, 0.01361688319593668, 0.012279100716114044, 0.017649170011281967, 0.012768285349011421, 0.010936972685158253, 0.011346515268087387, 0.009717716835439205, 0.013304824009537697, 0.01073551643639803, 0.012489685788750648, 0.008835752494633198, 0.01032152958214283, 0.015032551251351833, 0.014762643724679947, 0.019424695521593094, 0.0166291743516922, 0.013621236197650433, 0.015185484662652016, 0.01782071590423584, 0.016899744048714638, 0.01250534225255251, 0.015176388435065746, 0.01404096744954586, 0.012979825027287006, 0.017369333654642105, 0.014059428125619888, 0.010016560554504395, 0.012857497669756413, 0.014425350353121758, 0.016379641368985176, 0.011913311667740345, 0.011506187729537487, 0.018163470551371574, 0.02317049913108349, 0.017137479037046432, 0.013830004259943962, 0.01325614657253027, 0.014683479443192482, 0.020898759365081787, 0.018543584272265434, 0.010288338176906109, 0.012347479350864887, 0.016912052407860756, 0.015330049209296703, 0.008611593395471573, 0.016592897474765778, 0.011282555758953094, 0.017860228195786476, 0.01403068471699953, 0.011546576395630836, 0.018753554672002792, 0.01389843039214611, 0.010337942279875278, 0.013481983914971352, 0.008653232827782631, 0.015309644863009453, 0.012722794897854328, 0.009820464067161083, 0.017464032396674156, 0.015346076339483261, 0.016895940527319908, 0.013173759914934635, 0.01425919495522976, 0.021844277158379555, 0.015109154395759106, 0.01628500036895275, 0.01799626275897026, 0.014236447401344776, 0.010727942921221256, 0.01539785135537386, 0.013255581259727478, 0.015202918089926243, 0.013061491772532463, 0.014628848060965538, 0.015355324372649193, 0.01686476171016693, 0.01241341419517994, 0.013730633072555065, 0.01065946463495493, 0.016072649508714676, 0.01506964210420847, 0.013856442645192146, 0.014702158980071545, 0.02180640585720539, 0.011076646856963634, 0.01568189263343811, 0.013341635465621948, 0.01635587587952614, 0.01412407960742712, 0.012502975761890411, 0.0131705142557621, 0.0141450185328722, 0.01303964201360941, 0.01616821624338627, 0.027395149692893028, 0.011723450385034084, 0.01753467321395874, 0.011598652228713036, 0.015621163882315159, 0.009112779051065445, 0.013413254171609879, 0.01685653254389763, 0.018918411806225777, 0.01677645742893219, 0.01033798884600401, 0.0159732848405838, 0.010532347485423088, 0.016760479658842087, 0.01786953955888748, 0.012173616327345371, 0.016448764130473137, 0.015083465725183487, 0.015392953529953957, 0.013732904568314552, 0.011471048928797245, 0.014893777668476105, 0.011794153600931168, 0.018478697165846825, 0.012143145315349102, 0.010517273098230362, 0.017898546531796455, 0.01423246692866087, 0.014084283262491226, 0.015336374752223492, 0.011585851199924946, 0.016332264989614487, 0.0153045654296875, 0.016788695007562637, 0.01286937016993761, 0.02037760056555271, 0.011611132882535458, 0.010130283422768116, 0.0161350816488266, 0.016042033210396767, 0.013727082870900631, 0.014947396703064442, 0.014458208344876766, 0.01631142571568489, 0.01504430454224348, 0.012390749529004097, 0.020528914406895638, 0.010608320124447346, 0.013837313279509544, 0.01490450743585825, 0.010124126449227333, 0.010478144511580467, 0.01268378458917141, 0.015946978703141212, 0.01167976949363947, 0.013557025231420994, 0.015001761727035046, 0.015831850469112396, 0.015655647963285446, 0.014396104961633682, 0.009965553879737854, 0.01509483065456152, 0.020063383504748344, 0.012368099763989449, 0.018457021564245224, 0.015992755070328712, 0.016845669597387314, 0.01595737226307392, 0.012677187100052834, 0.018416712060570717, 0.011307275854051113, 0.012258880771696568, 0.019921597093343735, 0.016651298850774765, 0.013102871365845203, 0.02221229113638401, 0.008991380222141743, 0.01488400436937809, 0.015945928171277046, 0.01041024923324585, 0.010955617763102055, 0.020051058381795883, 0.01490097027271986, 0.017966147512197495, 0.01741086132824421, 0.014622400514781475, 0.018726281821727753, 0.01733509823679924, 0.009478745050728321, 0.012382066808640957, 0.013415890745818615, 0.014557731337845325, 0.014050627127289772, 0.012596054933965206, 0.019661512225866318, 0.014422854408621788, 0.013274822384119034, 0.012946329079568386, 0.008257672190666199, 0.01135559007525444, 0.01647154800593853, 0.0117330988869071, 0.012826125137507915, 0.016141705214977264, 0.01530689187347889, 0.01820262148976326, 0.009850570000708103, 0.01373992022126913, 0.017330370843410492, 0.018638577312231064, 0.01217627339065075, 0.00660079438239336, 0.01356660295277834, 0.015052447095513344, 0.009135265834629536, 0.016830384731292725, 0.01853279024362564, 0.01559709757566452, 0.016899244859814644, 0.011738214641809464, 0.01591837778687477, 0.016962654888629913, 0.01527174562215805, 0.016522208228707314, 0.017129668965935707, 0.01832699403166771, 0.015176906250417233, 0.015600481070578098, 0.014799575321376324, 0.011876239441335201, 0.01335948333144188, 0.0120448162779212, 0.016566826030611992, 0.011407301761209965, 0.015779387205839157, 0.010502167046070099, 0.018208865076303482, 0.013931947760283947, 0.01145635824650526, 0.013102215714752674, 0.016424985602498055, 0.014568166807293892, 0.022760391235351562, 0.015271005220711231, 0.014421438798308372, 0.014142326079308987, 0.009594016708433628, 0.014425178989768028, 0.012880784459412098, 0.016748469322919846, 0.01263733021914959, 0.017088918015360832, 0.014669991098344326, 0.012049775570631027, 0.01325497031211853, 0.014062711037695408, 0.013722964562475681, 0.013414431363344193, 0.01594829559326172, 0.012433752417564392, 0.01619742065668106, 0.010082099586725235, 0.014123230241239071, 0.01637980528175831, 0.011360175907611847, 0.01558392122387886, 0.014541635289788246, 0.012587002478539944, 0.01655775122344494, 0.012013290077447891, 0.012647728435695171, 0.014712546020746231, 0.01882333680987358, 0.015221410430967808, 0.01846608705818653, 0.01428438164293766, 0.013551177456974983, 0.008066447451710701, 0.018927153199911118, 0.010646138340234756, 0.01277433056384325, 0.012758995406329632, 0.021756906062364578, 0.014570842497050762, 0.01671837456524372, 0.01431433018296957, 0.022064141929149628, 0.01267344132065773, 0.014434619806706905, 0.017035478726029396, 0.012003124691545963, 0.013976288959383965, 0.009266224689781666, 0.013222889043390751, 0.01377180963754654, 0.00968968402594328, 0.013419240713119507, 0.013709194958209991, 0.01677161268889904, 0.011792252771556377, 0.010083544068038464, 0.015731321647763252, 0.02191142551600933, 0.01390788983553648, 0.012947751209139824, 0.01912374421954155, 0.013384324498474598, 0.014505098573863506, 0.014032591134309769, 0.014775828458368778, 0.009765076451003551, 0.013791763223707676, 0.015724776312708855, 0.021244242787361145, 0.015458043664693832, 0.017467470839619637, 0.010941826738417149, 0.01075274683535099, 0.011764061637222767, 0.01584858074784279, 0.008800896815955639, 0.013610991649329662, 0.011358614079654217, 0.012525786645710468, 0.013234782963991165, 0.013011809438467026, 0.018107913434505463, 0.011420052498579025, 0.008347764611244202, 0.01437180582433939, 0.02066621743142605, 0.015165334567427635, 0.014673634432256222, 0.01311960257589817, 0.009328260086476803, 0.01484586950391531, 0.016441240906715393, 0.015654293820261955, 0.014438912272453308, 0.017710749059915543, 0.020336929708719254, 0.011782918125391006, 0.015070459805428982, 0.016157042235136032, 0.016717659309506416, 0.016222666949033737, 0.01820269785821438, 0.01286607701331377, 0.0178490299731493, 0.017478855326771736, 0.01640363410115242, 0.0099756745621562, 0.012854414992034435, 0.021975794807076454, 0.015340619720518589, 0.012645842507481575, 0.01218426413834095, 0.013190841302275658, 0.015230604447424412, 0.011415773071348667, 0.01037532277405262, 0.01253659836947918, 0.013897838070988655, 0.01772221550345421, 0.013064291328191757, 0.01035818737000227, 0.01278441771864891, 0.015644853934645653, 0.015452454797923565, 0.018725883215665817, 0.012975317426025867, 0.01320117712020874, 0.015939980745315552, 0.01639075204730034, 0.015521226450800896, 0.01205209270119667, 0.015998398885130882, 0.013780416920781136, 0.012997028417885303, 0.01762467436492443, 0.01670519821345806, 0.010127037763595581, 0.01637844555079937, 0.016466155648231506, 0.014608684927225113, 0.01498111616820097, 0.012483660131692886, 0.017399616539478302, 0.012534985318779945, 0.013070505112409592, 0.017571261152625084, 0.01209427509456873, 0.01814395934343338, 0.017550153657794, 0.012314443476498127, 0.010998173616826534, 0.02109103836119175, 0.01738462597131729, 0.013113658875226974, 0.016194576397538185, 0.010610085912048817, 0.011428236961364746, 0.017404699698090553, 0.015804219990968704, 0.010673768818378448, 0.016865327954292297, 0.021301215514540672, 0.015392916277050972, 0.014182613231241703, 0.015586260706186295, 0.012192449532449245, 0.015012845396995544, 0.014795730821788311, 0.008837992325425148, 0.019583728164434433, 0.012296382337808609, 0.016704101115465164, 0.011342233046889305, 0.01875291019678116, 0.013534748926758766, 0.010484077036380768, 0.016709696501493454, 0.02026967704296112, 0.018889877945184708, 0.011184494011104107, 0.013710844330489635, 0.015798643231391907, 0.014669758267700672, 0.012740422040224075, 0.014708010479807854, 0.014093136414885521, 0.016439039260149002, 0.018184982240200043, 0.014826263301074505, 0.015509928576648235, 0.011197634972631931, 0.013128240592777729, 0.009616504423320293, 0.012262402102351189, 0.011985856108367443, 0.010589847341179848, 0.015917079523205757, 0.016517600044608116, 0.01084883138537407, 0.012407276779413223, 0.015187164768576622, 0.016869325190782547, 0.011616604402661324, 0.010485474020242691, 0.015483218245208263, 0.013773779384791851, 0.013584532774984837, 0.015648551285266876, 0.013091053813695908, 0.013326729647815228, 0.009597604162991047, 0.018675295636057854, 0.01264861598610878, 0.016226429492235184, 0.01646386831998825, 0.011068344116210938, 0.020796649158000946, 0.015306961722671986, 0.015130235813558102, 0.01549635548144579, 0.010908747091889381, 0.012723827734589577, 0.012509855441749096, 0.018033862113952637, 0.015547871589660645, 0.009537188336253166, 0.023121781647205353, 0.013170103542506695, 0.01585880108177662, 0.013229482807219028, 0.007288631517440081, 0.01707097329199314, 0.01513536088168621, 0.019703343510627747, 0.011827967129647732, 0.009967836551368237, 0.017519986256957054, 0.01665634661912918, 0.009379362687468529, 0.014247057028114796, 0.011713718995451927, 0.014128623530268669, 0.013675653375685215, 0.01707587204873562, 0.012414313852787018, 0.014989757910370827, 0.013943714089691639, 0.013748149387538433, 0.013052270747721195, 0.01300298422574997, 0.019706057384610176, 0.01480400562286377, 0.01646234095096588, 0.017301546409726143, 0.014638744294643402, 0.01850791648030281, 0.01640193536877632, 0.012640242464840412, 0.018352597951889038, 0.030300000682473183, 0.012779883109033108, 0.011741961352527142, 0.015226610004901886, 0.016332749277353287, 0.013549376279115677, 0.015935519710183144, 0.011405864730477333, 0.01874707080423832, 0.014870061539113522, 0.010913916863501072, 0.014660470187664032, 0.012458679266273975, 0.01958375610411167, 0.012640055269002914, 0.017414558678865433, 0.014004099182784557, 0.012971778400242329, 0.01081143319606781, 0.012768381275236607, 0.01389482244849205, 0.012520692311227322, 0.018077341839671135, 0.01499275490641594, 0.011101393960416317, 0.014103909954428673, 0.013872970826923847, 0.014331432990729809, 0.014861573465168476, 0.014450273476541042, 0.013819247484207153, 0.013533556833863258, 0.016206692904233932, 0.010728534311056137, 0.016888612881302834, 0.010294072329998016, 0.010879532434046268, 0.015847554430365562, 0.020770734176039696, 0.014694488607347012, 0.013521967455744743, 0.012475480325520039, 0.01712561771273613, 0.013753972016274929, 0.013639033772051334, 0.015138082206249237, 0.01354992389678955, 0.013690706342458725, 0.018019115552306175, 0.015336688607931137, 0.016499215736985207, 0.01398784015327692, 0.01759837567806244, 0.015683842822909355, 0.01672546938061714, 0.017651457339525223, 0.011682573705911636, 0.016829203814268112, 0.011329188011586666, 0.019133806228637695, 0.012027577497065067, 0.01851501688361168, 0.015858547762036324, 0.013239435851573944, 0.015127330087125301, 0.015513126738369465, 0.012513062916696072, 0.012784162536263466, 0.01279529556632042, 0.00895454827696085, 0.015506465919315815, 0.018299518153071404, 0.014981277287006378, 0.017025675624608994, 0.013293667696416378, 0.01864805445075035, 0.013568549416959286, 0.011024978011846542, 0.015041633509099483, 0.018033774569630623, 0.011937840841710567, 0.01671656221151352, 0.01538589783012867, 0.012053102254867554, 0.018668193370103836, 0.020354706794023514, 0.016743358224630356, 0.01391089428216219, 0.015293989330530167, 0.023151971399784088, 0.013122860342264175, 0.02188684418797493, 0.01313807163387537, 0.018425580114126205, 0.013414292596280575, 0.014503566548228264, 0.015803944319486618, 0.013664066791534424, 0.01513286679983139, 0.012050402350723743, 0.013363135978579521, 0.016910700127482414, 0.01449190080165863, 0.015295629389584064, 0.015075097791850567, 0.01573590561747551, 0.016818806529045105, 0.011715131811797619, 0.01631290093064308, 0.015483907423913479, 0.017703859135508537, 0.012935066595673561, 0.01353193074464798, 0.01306062564253807, 0.008225490339100361, 0.010974221862852573, 0.012016154825687408, 0.013778380118310452, 0.01339094340801239, 0.019603926688432693, 0.010589775629341602, 0.012218572199344635, 0.013044534251093864, 0.015359696000814438, 0.019036274403333664, 0.009616280905902386, 0.008199301548302174, 0.011137755587697029, 0.015002359636127949, 0.016729341819882393, 0.011223209090530872, 0.018046367913484573, 0.014351882040500641, 0.013324961066246033, 0.014842908829450607, 0.017893830314278603, 0.013685880228877068, 0.01861957646906376, 0.017647158354520798, 0.015426764264702797, 0.015257942490279675, 0.011195267550647259, 0.01023242250084877, 0.012450365349650383, 0.013538938015699387, 0.017632920295000076, 0.01405947282910347, 0.014494639821350574, 0.013359093107283115, 0.01265645120292902, 0.017270056530833244, 0.01325537171214819, 0.01678638532757759]. ## How to use You can use this model directly with a pipeline for text classification: ```python from transformers import pipeline classifier = pipeline("text-classification", model="YusuphaJuwara/nli-fever") result = classifier("premise", "hypothesis") print(result) ``` ## Saved Metrics This model repository includes a `metrics.json` file containing detailed training metrics. You can load these metrics using the following code: ```python from huggingface_hub import hf_hub_download import json metrics_file = hf_hub_download(repo_id="YusuphaJuwara/nli-fever", filename="metrics.json") with open(metrics_file, 'r') as f: metrics = json.load(f) # Now you can access metrics like: print("Last epoch: ", metrics['last_epoch']) print("Final validation loss: ", metrics['val_losses'][-1]) print("Final validation accuracy: ", metrics['val_accuracies'][-1]) ``` These metrics can be useful for continuing training from the last epoch or for detailed analysis of the training process. ## Training results ![Include a plot of your training metrics here](loss_plot.png) Limitations and bias ## This model may exhibit biases present in the training data. Always validate results and use the model responsibly. ## Plots ![loss plots](loss_plot.png) ![Generated images](animation.gif)