ZachXie commited on
Commit
68ddf34
1 Parent(s): d557554

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -1,11 +1,10 @@
1
  ---
 
2
  tags:
3
  - LunarLander-v2
4
- - ppo
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
- - custom-implementation
8
- - deep-rl-course
9
  model-index:
10
  - name: PPO
11
  results:
@@ -17,45 +16,22 @@ model-index:
17
  type: LunarLander-v2
18
  metrics:
19
  - type: mean_reward
20
- value: -7.07 +/- 99.54
21
  name: mean_reward
22
  verified: false
23
  ---
24
 
25
- # PPO Agent Playing LunarLander-v2
 
 
26
 
27
- This is a trained model of a PPO agent playing LunarLander-v2.
28
-
29
- # Hyperparameters
30
- ```python
31
- {'exp_name': 'ppo'
32
- 'seed': 1
33
- 'torch_deterministic': True
34
- 'cuda': True
35
- 'track': False
36
- 'wandb_project_name': 'cleanRL'
37
- 'wandb_entity': None
38
- 'capture_video': False
39
- 'env_id': 'LunarLander-v2'
40
- 'total_timesteps': 50000
41
- 'learning_rate': 0.002
42
- 'num_envs': 4
43
- 'num_steps': 128
44
- 'anneal_lr': True
45
- 'gae': True
46
- 'gamma': 0.99
47
- 'gae_lambda': 0.95
48
- 'num_minibatches': 4
49
- 'update_epochs': 4
50
- 'norm_adv': True
51
- 'clip_coef': 0.2
52
- 'clip_vloss': True
53
- 'ent_coef': 0.01
54
- 'vf_coef': 0.5
55
- 'max_grad_norm': 0.5
56
- 'target_kl': None
57
- 'repo_id': 'ZachXie/ppo-LunarLander-v2'
58
- 'batch_size': 512
59
- 'minibatch_size': 128}
60
- ```
61
-
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
  - LunarLander-v2
 
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
+ - stable-baselines3
 
8
  model-index:
9
  - name: PPO
10
  results:
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 267.98 +/- 20.00
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ccd7d0a9a20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ccd7d0a9ab0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ccd7d0a9b40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ccd7d0a9bd0>", "_build": "<function ActorCriticPolicy._build at 0x7ccd7d0a9c60>", "forward": "<function ActorCriticPolicy.forward at 0x7ccd7d0a9cf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ccd7d0a9d80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ccd7d0a9e10>", "_predict": "<function ActorCriticPolicy._predict at 0x7ccd7d0a9ea0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ccd7d0a9f30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ccd7d0a9fc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ccd7d0aa050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ccd84e55a80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723348677579227999, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOa/jj0/C1M+CFWwvePmnL52NjM9R/IGuwAAAAAAAAAAzTtxPkAH3z6gBX++RKWtvl9HdD0KC729AAAAAAAAAADmNIy94DO9PoJaCj+DANi+YCGZPg6P0j4AAAAAAAAAABpLsD24ZJc+igkMvRUvpr7BvZQ9lSxdvAAAAAAAAAAAzdDFPAOjIrwb74m9K8+3O4j7kb2uI6o8AACAPwAAgD+m6TE+6KEfP4nTg7v71gO/wgPiPeYwgLwAAAAAAAAAAPMCnb3lpqc/ctIVv35HBb/ai/u8+/iCvgAAAAAAAAAAKtCPPnyKRT+4EZI9YhrtvjICkT5GL7u9AAAAAAAAAAAAxi28e8OMPY0M8jwZyam+ltq7PTt77LwAAAAAAAAAADO78jv2BG66hashOI3aEzPmIte5TmU9twAAgD8AAIA/TXFiPYY9rT+6WIg+G6e/vrbr27ytw5w9AAAAAAAAAACa8Va9XC8oumbf37bCPdqx15LmOhkqBjYAAIA/AACAP2Y5ZT3Sx5w/NxUoPu7ACr+5Bda8M+IEPQAAAAAAAAAAmnXhuxnOsz8G4q6+Z+EZvkEvvztizhI9AAAAAAAAAAAzP+y8KSgHujAC2rwVYO84BkGxO5N7XrgAAIA/AACAP5priTxxxky7tgm+u038kDyxMIW8wCd5PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMxOPFNtZWMAWyUS9WMAXSUR0Cm6W2dVea8dX2UKGgGR0Bx5MtDlYEGaAdL4WgIR0Cm6YCSzPa+dX2UKGgGR0BxFrKV6eGxaAdNDgFoCEdApuniCvovBnV9lChoBkdAcQZf9gnc+WgHS9RoCEdApuogm1IAfnV9lChoBkdAcTuzGPxQSGgHS/NoCEdApuo7h73PA3V9lChoBkdAbRR29L6DXmgHS+toCEdApur87QswtnV9lChoBkdAceE1ZDArQWgHTQoBaAhHQKbrGMlTm4l1fZQoaAZHQHCFLzbvgFZoB0vQaAhHQKbrHYf4h2Z1fZQoaAZHQHIiP0RODapoB00GAWgIR0Cm6zLWZqmCdX2UKGgGR0BxU+vLX+VDaAdL+mgIR0Cm63iiyprDdX2UKGgGR0Bxu8lE7W/baAdL5WgIR0Cm67lirksCdX2UKGgGR0BxqlCQcPvsaAdL82gIR0Cm7BKekHlfdX2UKGgGR0Bzuaj/MnqnaAdLyWgIR0Cm7FUNSZSfdX2UKGgGR0BwDJMDfWMCaAdL7WgIR0Cm7GI3R5TqdX2UKGgGR0BvAj5hz/6waAdL92gIR0Cm7HXTd+G5dX2UKGgGR0By1vjYI0IkaAdNcQJoCEdApu3OXw9aEHV9lChoBkdAcAGLKV6eG2gHS/xoCEdApu3frrxAjnV9lChoBkdAcpNuVopQUGgHTQMBaAhHQKbuCEBbOeJ1fZQoaAZHQHAlWPHT7VJoB0voaAhHQKbuEm6XjVB1fZQoaAZHQHEe8jRlYlpoB0v1aAhHQKbuLKJ2t+11fZQoaAZHQHHi3R5TqB5oB0vFaAhHQKbuMXVLBbh1fZQoaAZHQHJbd4A0bcZoB0vbaAhHQKbulrUsnRd1fZQoaAZHQHCgUhq0tyxoB00pAWgIR0Cm7sjlYEGJdX2UKGgGR0BxrXCzkZJkaAdL3GgIR0Cm7vMSCe3AdX2UKGgGR0BxYK8nNPgvaAdL82gIR0Cm7vKeK8+SdX2UKGgGR0Bx+cCW/rSmaAdL4GgIR0Cm7zi7TUiIdX2UKGgGR0ByUdJYkmhNaAdL0mgIR0Cm709eyAx0dX2UKGgGR0Bxdm717IDHaAdNIwFoCEdApu+o0IkZ8HV9lChoBkdAcTEHtF8XvmgHS/RoCEdApvkkGX5WR3V9lChoBkdAcapr4nF5wGgHS/hoCEdApvlE5sCT2XV9lChoBkdAcoK77Kq4pmgHTQABaAhHQKb5Q9+PRzB1fZQoaAZHQHKhq8cuJ1toB0vkaAhHQKb6QJzDGcZ1fZQoaAZHQG6tGaQV9F5oB0v4aAhHQKb6ivFFUhp1fZQoaAZHQG+TSiM5wOxoB0voaAhHQKb6izru6Vd1fZQoaAZHQHGhrqyGBWhoB0viaAhHQKb6kDq4YrJ1fZQoaAZHQHB/YZIg/1RoB0vlaAhHQKb6oMPSUkh1fZQoaAZHQHGexegL7XRoB0v+aAhHQKb62L7XQMR1fZQoaAZHQHNyes1baAZoB0vdaAhHQKb666J66at1fZQoaAZHQHOCImPYFq1oB0vOaAhHQKb7EEnLJS11fZQoaAZHQHHBePJaJRBoB0v3aAhHQKb7gqaw2VF1fZQoaAZHQHQIor8R+SdoB0vcaAhHQKb7lK4hEBt1fZQoaAZHQHEoUDIRywRoB0vbaAhHQKb7qws5GSZ1fZQoaAZHQHGr0qpcX3xoB00CAWgIR0Cm+9YE4ecQdX2UKGgGR0Bwle6iCaqkaAdL02gIR0Cm++jAaef7dX2UKGgGR0BziMGW2PT5aAdL02gIR0Cm/Exy4nWrdX2UKGgGR0BwauIsRQJpaAdLzWgIR0Cm/FdMbm2cdX2UKGgGR0By7d8eCCjDaAdL6GgIR0Cm/LovSMLndX2UKGgGR0Byg9BOYYzjaAdLw2gIR0Cm/Wy26TW5dX2UKGgGR0BySigUUO/daAdL32gIR0Cm/gQ+t8u0dX2UKGgGR0ByjoYYR/ViaAdL+WgIR0Cm/h0zCUHIdX2UKGgGR0BxSVYaHbh4aAdL9GgIR0Cm/muEEkjYdX2UKGgGR0BwmJz90ihWaAdL6mgIR0Cm/qKur6tUdX2UKGgGR0BzmOmZVn27aAdL/WgIR0Cm/qYM4LkTdX2UKGgGR0BwY/MxGlQ/aAdL52gIR0Cm/rL8BMi9dX2UKGgGR0BxPhrAP/aQaAdL12gIR0Cm/y8GcFyJdX2UKGgGR0ByVx+az/p/aAdL9mgIR0Cm/zfg75mAdX2UKGgGR0BuyLin5zo2aAdL52gIR0Cm/6qsdT5wdX2UKGgGR0By2K0ngHeKaAdL+2gIR0Cm/+woTfzjdX2UKGgGR0BzEoUxmCiAaAdL0mgIR0CnADAy2x6fdX2UKGgGR0BweHG+9Jz1aAdL+mgIR0CnAGJxFRYSdX2UKGgGR0BzaFVYISlFaAdL4GgIR0CnAGzwlSjydX2UKGgGR0Bxb2Y4Qz1saAdLy2gIR0CnAJRKHwgDdX2UKGgGR0By9BcGC7K8aAdNDQFoCEdApwCeaDwpfHV9lChoBkdAUnmp++dsi2gHS6ZoCEdApwC1BjWkJ3V9lChoBkdATHVQ0oBq9GgHS4VoCEdApwI/VkMCtHV9lChoBkdAcV4fkWAPNGgHS8hoCEdApwJi925hB3V9lChoBkdAceV5qubI92gHS+JoCEdApwKkvZh8Y3V9lChoBkdAb1lq8lHBlGgHS+loCEdApwLlZTyau3V9lChoBkdAcZ8/XoTwlWgHS95oCEdApwMcJY1YQ3V9lChoBkdAckQAAAAAAGgHS+loCEdApwNlTLns9nV9lChoBkdAcA9sOoYNzGgHS+FoCEdApwPKwD/2kHV9lChoBkdAb3sfHPu5SWgHS99oCEdApwPKrJbMYHV9lChoBkdAcFfB0IToMmgHTQABaAhHQKcD82CuloF1fZQoaAZHQHJ9aG+K0lZoB0vlaAhHQKcEsNPP9k11fZQoaAZHQHJXAnlXA/NoB0veaAhHQKcE1PO6d2B1fZQoaAZHQHEHMl9jPOZoB0vXaAhHQKcE7L/0dzZ1fZQoaAZHQHCQsj3VTaVoB0vcaAhHQKcFLzT4L1F1fZQoaAZHQHB4v6be/HpoB0vjaAhHQKcFfScbzbx1fZQoaAZHQHGIaLfk3jxoB0v6aAhHQKcFlY150KZ1fZQoaAZHQHJrh4Y77sRoB00CAWgIR0CnBfKFqSHNdX2UKGgGR0A23Cj1wo9caAdLn2gIR0CnBj8ZccENdX2UKGgGR0BxGjBl+VkdaAdL12gIR0CnBpxHPNVzdX2UKGgGR0BR8HIMjNY9aAdLoWgIR0CnBrdnK4hEdX2UKGgGR0Bx5ZEhJRO2aAdL12gIR0CnBsi0OVgQdX2UKGgGR0By8at0V8CxaAdL8GgIR0CnBuvmxMWXdX2UKGgGR0BStREBsANoaAdLxWgIR0CnBzpwCKaYdX2UKGgGR0BzLYSqU/wBaAdLyGgIR0CnB2Pv0AcUdX2UKGgGR0BuBAPGyX2NaAdL42gIR0CnB2we/5+IdX2UKGgGR0Bysgzdk8RuaAdL/WgIR0CnB4CyyD7JdX2UKGgGR0BxukAAAAAAaAdLzGgIR0CnCBoHLRrrdX2UKGgGR0ByJDpLVWjoaAdL2mgIR0CnCD1wo9cKdX2UKGgGR0Byxy9RJmNBaAdL1WgIR0CnCG83dbgTdX2UKGgGR0ByskjeKsMiaAdL/mgIR0CnCKj5j6N3dX2UKGgGR0BzEJs9B8hLaAdL3WgIR0CnCMMo+fRNdX2UKGgGR0BvN3qZ+hGpaAdL22gIR0CnCRmwRoRJdX2UKGgGR0BxgbsdDIBBaAdL9GgIR0CnCSd+w1R+dX2UKGgGR0Bx2mGKyfL+aAdL0mgIR0CnCaTGgi/xdX2UKGgGR0BymRflZHNHaAdL4GgIR0CnCfRJNCZ4dX2UKGgGR0Bx5FJoTPB0aAdNBgFoCEdApwoTIYFaCHV9lChoBkdAcrrOymhufmgHS8BoCEdApwo2wzLwF3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7823db8c4670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7823db8c4700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7823db8c4790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7823db8c4820>", "_build": "<function ActorCriticPolicy._build at 0x7823db8c48b0>", "forward": "<function ActorCriticPolicy.forward at 0x7823db8c4940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7823db8c49d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7823db8c4a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7823db8c4af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7823db8c4b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7823db8c4c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7823db8c4ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7823db872680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733588936148145459, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADz3zyPun+6P2I+vHIZFrwCley6iisDPQAAgD8AAAAAmlraPAUdmbugi3A89cKcPMPWA73ekYQ9AACAPwAAgD8znkC9ro+Hun6ga7iKJK42hcgXu1oFgTcAAIA/AACAPzNbmrziNY0/o7KJvfmf5L6viGW9SvqBPQAAAAAAAAAAmoBbvYjrgz3ZeKi9Os6AvnIJ173+qFu9AAAAAAAAAABmu0A9EAS0P0+Lvj5sOSe+TP1qPYZyHz4AAAAAAAAAAK38RD4M00I/qmGMvlJys756V/W8EyeavQAAAAAAAAAAAHw/PSOacz0youE8WnpVvgWgmzyRH7M8AAAAAAAAAABNAYS9MHS4PuVVsb1+V4S+DBi1vZjdOD0AAAAAAAAAAJoyBT3hRKm6dRIPObp/V7Z7J/S5/cwiuAAAgD8AAIA/5mvqPZetFj/iHxC+QMySvtpgVD1Cwqq9AAAAAAAAAABmesC8WRYFPxmWo7zBxpO+OAn7vPLWTb0AAAAAAAAAADOexbyYiBA/dABGPi0/nL6q53U9YDnNOgAAAAAAAAAAsxlFPSkkd7pkbYe1E5QAsRQNMjtqoLo0AACAPwAAgD/NVCu9ZB6rP26nj77t1NC+dYcFPPi+gr0AAAAAAAAAAJq+iz3gCbk/FYk4Pwa0hj0RVGS8/HUAPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG2HMDOkcjuMAWyUS/2MAXSUR0CQ/RDEm6XjdX2UKGgGR0BxxnuTibUgaAdNDwFoCEdAkP2t9tuUEHV9lChoBkdAcQcCA+Y+jmgHTREBaAhHQJD92HtWuHN1fZQoaAZHQHDWRk7OmixoB00dAWgIR0CQ/idkauOkdX2UKGgGR0Bxs3/EOy3TaAdNRgFoCEdAkQCwsbvPT3V9lChoBkdAcuv/0NBnjGgHTQ4BaAhHQJEBJW+49X91fZQoaAZHQHMLQFgUlAxoB007AWgIR0CRAeLHuJDWdX2UKGgGR0ByABXFLnLaaAdNHgFoCEdAkQLKTKT0QXV9lChoBkdAcEkxjJ+2E2gHTRgBaAhHQJEDSpaRp111fZQoaAZHQHHZGseXAuZoB00hAWgIR0CRA3euFHrhdX2UKGgGR0BvVHvF3pwCaAdNDQFoCEdAkQQ8nNPgvXV9lChoBkdAc1UbExZdOmgHTQgBaAhHQJEEgEaESM91fZQoaAZHQHJAcI7eVLVoB0v9aAhHQJEElc6eXiR1fZQoaAZHQHIvnEdeY2NoB00dAWgIR0CRBn+6y0KJdX2UKGgGR0ByXuNjslcAaAdL9GgIR0CRBog3cYZVdX2UKGgGR0Bv5cuL74zraAdL/mgIR0CRB16yjYZmdX2UKGgGR0Bw7Tgk1MufaAdNMQFoCEdAkQgla8pTdnV9lChoBkdAcBFsvZh8Y2gHTR0BaAhHQJEI502cawV1fZQoaAZHQHKEKQaJhv1oB008AWgIR0CRCco6CDmKdX2UKGgGR0Bwk6gJ1JUYaAdNAwFoCEdAkQxH1e0G/3V9lChoBkdAcR2qynk1dmgHS/ZoCEdAkQyMsUZeiXV9lChoBkdAb8J/2Cdz4mgHTVMBaAhHQJENPxXnyNJ1fZQoaAZHQGvDFjEvTPVoB00FAWgIR0CRDgMOPNmldX2UKGgGR0Bx4UINVinYaAdNSgFoCEdAkQ41ev6j33V9lChoBkdAclSNWEK3NWgHTSgBaAhHQJEOZ0ZFXq91fZQoaAZHQG1gMA/9pAVoB00YAWgIR0CRDxNet0V8dX2UKGgGR0BxNLhqCYkWaAdNdgFoCEdAkQ8eWWyC4HV9lChoBkdAcKx9+w1R+GgHTQEBaAhHQJEQhDG96C11fZQoaAZHQG2wqRuCPIZoB01FAWgIR0CRENr30wrUdX2UKGgGR0BuIJMxoIv8aAdNJgFoCEdAkRHRY/3WWnV9lChoBkdAcsennuAqeGgHS/toCEdAkRKQGbCrLnV9lChoBkdAbUFfuTibUmgHTRQBaAhHQJESv/Lkjop1fZQoaAZHQHHaWtp22XtoB005AWgIR0CRE0bYK6WgdX2UKGgGR0BgPTX8O09haAdN6ANoCEdAkRRAV45cT3V9lChoBkdAcvc9wm3OOmgHTS8BaAhHQJEVOnZTQ3R1fZQoaAZHQHH1aDPGACpoB0v2aAhHQJEVZRLsa891fZQoaAZHQHGv6rilzltoB00HAWgIR0CRFiyeqaPTdX2UKGgGR0BtwVbRnezlaAdL92gIR0CRFwB2wFC+dX2UKGgGR0BwZDSRbKRuaAdNBQFoCEdAkRdXu/k/8nV9lChoBkdAcfGoLG7z1GgHS/toCEdAkRdYi1RceXV9lChoBkdAcCGSFXaJymgHTRgBaAhHQJEY56KLsKN1fZQoaAZHQHNmdmlImPZoB00mAWgIR0CRGV58Sf16dX2UKGgGR0By6gFY+0PZaAdNCAFoCEdAkSwNNahYeXV9lChoBkdAcf+vmozeoGgHTSQBaAhHQJEsGbI91U51fZQoaAZHQGyTDC53C9BoB00xAWgIR0CRLE35N47jdX2UKGgGR0BwtKM2m52AaAdL/mgIR0CRLZfkmx+sdX2UKGgGR0BtHED8tPHlaAdNHAFoCEdAkS5SR8twrHV9lChoBkdAcYZ3CsOoYWgHTS8BaAhHQJEu+zLOiWV1fZQoaAZHQGzbH8KohpxoB00JAWgIR0CRL4nQY1pCdX2UKGgGR0Bsziy+pOvdaAdNCAFoCEdAkTDGlQ/HHXV9lChoBkdAczR8VYZEUmgHTRACaAhHQJEzHP0I1Lt1fZQoaAZHQHCkSOBDohZoB00vAWgIR0CRMxg13t8edX2UKGgGR0BwcHEyckMTaAdNCQFoCEdAkTP4VM23rnV9lChoBkdAcXlEwWWQfmgHTSkBaAhHQJE1Fvddmg91fZQoaAZHQHDoYd+5OJtoB01KAWgIR0CRNYwSamXPdX2UKGgGR0ByGFTZQHiWaAdNRAFoCEdAkTbGexwAEXV9lChoBkdAbkRMB6rvLGgHTSsBaAhHQJE30p2ECeV1fZQoaAZHQHH5s5wOvuBoB00wAWgIR0CROHTb349HdX2UKGgGR0BzBjIo3JgcaAdNBAFoCEdAkTh+JP69CnV9lChoBkdAcfXrDZUT+WgHTRgBaAhHQJE5Wlk6Lfl1fZQoaAZHQG9ISrYGt6poB00hAWgIR0CROYeZXuE3dX2UKGgGR0ByBvxG2CumaAdNEQFoCEdAkToIGUwBYHV9lChoBkdAbaKQ9zOopGgHTSYBaAhHQJE7QQ+UyHp1fZQoaAZHQG3rQhwEQoVoB00RAWgIR0CRO2X3xnWbdX2UKGgGR0BwJR7b+Lm7aAdNIQFoCEdAkTuPboKUmnV9lChoBkdAcfQE/jbSJGgHTQcBaAhHQJE74yM1jy51fZQoaAZHQHGTsf7rLQpoB00QAWgIR0CRPYQXhwVCdX2UKGgGR0BxZx97WuoxaAdL3WgIR0CRPmo5ggHNdX2UKGgGR0ByTT3pOerdaAdNEQFoCEdAkT773fyf+XV9lChoBkdAcADJW/8EV2gHTSkBaAhHQJE/CtmtheB1fZQoaAZHQHKa0sFt8/loB00KAWgIR0CRPxydWhh6dX2UKGgGR0BydHCAMDwIaAdL8mgIR0CRP/BlcyFgdX2UKGgGR0BvsPt0FKTTaAdNCwFoCEdAkUGAy6+WW3V9lChoBkdAbH48274BWGgHTRABaAhHQJFBqUgSvkl1fZQoaAZHQHEQZxiobXJoB00SAWgIR0CRQuCFsYVJdX2UKGgGR0By79l5GBnSaAdNqAFoCEdAkUL/pljEvXV9lChoBkdAcO8kxASnL2gHTSMBaAhHQJFDX51vETB1fZQoaAZHQHAi/NRm9QJoB00cAWgIR0CRQ9RA8jiXdX2UKGgGR0Bwz0jUutfYaAdNDQFoCEdAkUR45T6zmnV9lChoBkdAcG/TDfm9x2gHTRkBaAhHQJFFK2qkuYh1fZQoaAZHQHFfkkGA09BoB00WAWgIR0CRRXA9V3lkdX2UKGgGR0Bxlk1DSgGsaAdNMgFoCEdAkUXM+u/1x3V9lChoBkdAb2MUu+RHPWgHTQMBaAhHQJFGerR0EHN1fZQoaAZHQHGspxR2r4poB00YAWgIR0CRSCZoPCl8dX2UKGgGR0BxCd97WuoxaAdNFQFoCEdAkUimys0YTHV9lChoBkdAcVy0P6KtP2gHTSMBaAhHQJFJG7iADq51fZQoaAZHQHGH6suFpPBoB0vkaAhHQJFJg5hjOLR1fZQoaAZHQHDfvNVzZHxoB00sAWgIR0CRSXrGza9LdX2UKGgGR0Bya+YPXkHVaAdNEwFoCEdAkUrMrqdH2HV9lChoBkdAciUA0sOG02gHS+5oCEdAkUrL1h9b5nV9lChoBkdAcq5SWqtHQWgHS+VoCEdAkUtRRZU1h3V9lChoBkdAb7rjghr302gHTW8BaAhHQJFMX6WPcSJ1fZQoaAZHQHIJUsasIVxoB00qAWgIR0CRTSsnRb8ndX2UKGgGR0BxhWwpvxYraAdNOQFoCEdAkU1cYMvysnV9lChoBkdAcDJ56dDpkmgHTRABaAhHQJFNavLX+VF1fZQoaAZHQHGrMmWt2cJoB00DAWgIR0CRTeF3Y+SsdX2UKGgGR0BzdcVpKzzFaAdNAQFoCEdAkVC9knTiKnV9lChoBkdAcFCZfD1oQGgHTUMBaAhHQJFRi+oLofV1fZQoaAZHQHB0ml/H5rRoB0v8aAhHQJFRqyX2M851fZQoaAZHQHKtBoRIz31oB01yAWgIR0CRUb+fywwCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9686b61448bf39f2104ddcc7671275c5db4a006494535f54761e9a7b19727d90
3
- size 147461
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d9609005996515cd8bcde8bd8e86e399f6b8914b6377c70cb8d7d2c516b2854
3
+ size 147489
ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7ccd7d0a9a20>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ccd7d0a9ab0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ccd7d0a9b40>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ccd7d0a9bd0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7ccd7d0a9c60>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7ccd7d0a9cf0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ccd7d0a9d80>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ccd7d0a9e10>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7ccd7d0a9ea0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ccd7d0a9f30>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ccd7d0a9fc0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ccd7d0aa050>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7ccd84e55a80>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -26,12 +26,12 @@
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1723348677579227999,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOa/jj0/C1M+CFWwvePmnL52NjM9R/IGuwAAAAAAAAAAzTtxPkAH3z6gBX++RKWtvl9HdD0KC729AAAAAAAAAADmNIy94DO9PoJaCj+DANi+YCGZPg6P0j4AAAAAAAAAABpLsD24ZJc+igkMvRUvpr7BvZQ9lSxdvAAAAAAAAAAAzdDFPAOjIrwb74m9K8+3O4j7kb2uI6o8AACAPwAAgD+m6TE+6KEfP4nTg7v71gO/wgPiPeYwgLwAAAAAAAAAAPMCnb3lpqc/ctIVv35HBb/ai/u8+/iCvgAAAAAAAAAAKtCPPnyKRT+4EZI9YhrtvjICkT5GL7u9AAAAAAAAAAAAxi28e8OMPY0M8jwZyam+ltq7PTt77LwAAAAAAAAAADO78jv2BG66hashOI3aEzPmIte5TmU9twAAgD8AAIA/TXFiPYY9rT+6WIg+G6e/vrbr27ytw5w9AAAAAAAAAACa8Va9XC8oumbf37bCPdqx15LmOhkqBjYAAIA/AACAP2Y5ZT3Sx5w/NxUoPu7ACr+5Bda8M+IEPQAAAAAAAAAAmnXhuxnOsz8G4q6+Z+EZvkEvvztizhI9AAAAAAAAAAAzP+y8KSgHujAC2rwVYO84BkGxO5N7XrgAAIA/AACAP5priTxxxky7tgm+u038kDyxMIW8wCd5PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,13 +45,13 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWV7QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMxOPFNtZWMAWyUS9WMAXSUR0Cm6W2dVea8dX2UKGgGR0Bx5MtDlYEGaAdL4WgIR0Cm6YCSzPa+dX2UKGgGR0BxFrKV6eGxaAdNDgFoCEdApuniCvovBnV9lChoBkdAcQZf9gnc+WgHS9RoCEdApuogm1IAfnV9lChoBkdAcTuzGPxQSGgHS/NoCEdApuo7h73PA3V9lChoBkdAbRR29L6DXmgHS+toCEdApur87QswtnV9lChoBkdAceE1ZDArQWgHTQoBaAhHQKbrGMlTm4l1fZQoaAZHQHCFLzbvgFZoB0vQaAhHQKbrHYf4h2Z1fZQoaAZHQHIiP0RODapoB00GAWgIR0Cm6zLWZqmCdX2UKGgGR0BxU+vLX+VDaAdL+mgIR0Cm63iiyprDdX2UKGgGR0Bxu8lE7W/baAdL5WgIR0Cm67lirksCdX2UKGgGR0BxqlCQcPvsaAdL82gIR0Cm7BKekHlfdX2UKGgGR0Bzuaj/MnqnaAdLyWgIR0Cm7FUNSZSfdX2UKGgGR0BwDJMDfWMCaAdL7WgIR0Cm7GI3R5TqdX2UKGgGR0BvAj5hz/6waAdL92gIR0Cm7HXTd+G5dX2UKGgGR0By1vjYI0IkaAdNcQJoCEdApu3OXw9aEHV9lChoBkdAcAGLKV6eG2gHS/xoCEdApu3frrxAjnV9lChoBkdAcpNuVopQUGgHTQMBaAhHQKbuCEBbOeJ1fZQoaAZHQHAlWPHT7VJoB0voaAhHQKbuEm6XjVB1fZQoaAZHQHEe8jRlYlpoB0v1aAhHQKbuLKJ2t+11fZQoaAZHQHHi3R5TqB5oB0vFaAhHQKbuMXVLBbh1fZQoaAZHQHJbd4A0bcZoB0vbaAhHQKbulrUsnRd1fZQoaAZHQHCgUhq0tyxoB00pAWgIR0Cm7sjlYEGJdX2UKGgGR0BxrXCzkZJkaAdL3GgIR0Cm7vMSCe3AdX2UKGgGR0BxYK8nNPgvaAdL82gIR0Cm7vKeK8+SdX2UKGgGR0Bx+cCW/rSmaAdL4GgIR0Cm7zi7TUiIdX2UKGgGR0ByUdJYkmhNaAdL0mgIR0Cm709eyAx0dX2UKGgGR0Bxdm717IDHaAdNIwFoCEdApu+o0IkZ8HV9lChoBkdAcTEHtF8XvmgHS/RoCEdApvkkGX5WR3V9lChoBkdAcapr4nF5wGgHS/hoCEdApvlE5sCT2XV9lChoBkdAcoK77Kq4pmgHTQABaAhHQKb5Q9+PRzB1fZQoaAZHQHKhq8cuJ1toB0vkaAhHQKb6QJzDGcZ1fZQoaAZHQG6tGaQV9F5oB0v4aAhHQKb6ivFFUhp1fZQoaAZHQG+TSiM5wOxoB0voaAhHQKb6izru6Vd1fZQoaAZHQHGhrqyGBWhoB0viaAhHQKb6kDq4YrJ1fZQoaAZHQHB/YZIg/1RoB0vlaAhHQKb6oMPSUkh1fZQoaAZHQHGexegL7XRoB0v+aAhHQKb62L7XQMR1fZQoaAZHQHNyes1baAZoB0vdaAhHQKb666J66at1fZQoaAZHQHOCImPYFq1oB0vOaAhHQKb7EEnLJS11fZQoaAZHQHHBePJaJRBoB0v3aAhHQKb7gqaw2VF1fZQoaAZHQHQIor8R+SdoB0vcaAhHQKb7lK4hEBt1fZQoaAZHQHEoUDIRywRoB0vbaAhHQKb7qws5GSZ1fZQoaAZHQHGr0qpcX3xoB00CAWgIR0Cm+9YE4ecQdX2UKGgGR0Bwle6iCaqkaAdL02gIR0Cm++jAaef7dX2UKGgGR0BziMGW2PT5aAdL02gIR0Cm/Exy4nWrdX2UKGgGR0BwauIsRQJpaAdLzWgIR0Cm/FdMbm2cdX2UKGgGR0By7d8eCCjDaAdL6GgIR0Cm/LovSMLndX2UKGgGR0Byg9BOYYzjaAdLw2gIR0Cm/Wy26TW5dX2UKGgGR0BySigUUO/daAdL32gIR0Cm/gQ+t8u0dX2UKGgGR0ByjoYYR/ViaAdL+WgIR0Cm/h0zCUHIdX2UKGgGR0BxSVYaHbh4aAdL9GgIR0Cm/muEEkjYdX2UKGgGR0BwmJz90ihWaAdL6mgIR0Cm/qKur6tUdX2UKGgGR0BzmOmZVn27aAdL/WgIR0Cm/qYM4LkTdX2UKGgGR0BwY/MxGlQ/aAdL52gIR0Cm/rL8BMi9dX2UKGgGR0BxPhrAP/aQaAdL12gIR0Cm/y8GcFyJdX2UKGgGR0ByVx+az/p/aAdL9mgIR0Cm/zfg75mAdX2UKGgGR0BuyLin5zo2aAdL52gIR0Cm/6qsdT5wdX2UKGgGR0By2K0ngHeKaAdL+2gIR0Cm/+woTfzjdX2UKGgGR0BzEoUxmCiAaAdL0mgIR0CnADAy2x6fdX2UKGgGR0BweHG+9Jz1aAdL+mgIR0CnAGJxFRYSdX2UKGgGR0BzaFVYISlFaAdL4GgIR0CnAGzwlSjydX2UKGgGR0Bxb2Y4Qz1saAdLy2gIR0CnAJRKHwgDdX2UKGgGR0By9BcGC7K8aAdNDQFoCEdApwCeaDwpfHV9lChoBkdAUnmp++dsi2gHS6ZoCEdApwC1BjWkJ3V9lChoBkdATHVQ0oBq9GgHS4VoCEdApwI/VkMCtHV9lChoBkdAcV4fkWAPNGgHS8hoCEdApwJi925hB3V9lChoBkdAceV5qubI92gHS+JoCEdApwKkvZh8Y3V9lChoBkdAb1lq8lHBlGgHS+loCEdApwLlZTyau3V9lChoBkdAcZ8/XoTwlWgHS95oCEdApwMcJY1YQ3V9lChoBkdAckQAAAAAAGgHS+loCEdApwNlTLns9nV9lChoBkdAcA9sOoYNzGgHS+FoCEdApwPKwD/2kHV9lChoBkdAb3sfHPu5SWgHS99oCEdApwPKrJbMYHV9lChoBkdAcFfB0IToMmgHTQABaAhHQKcD82CuloF1fZQoaAZHQHJ9aG+K0lZoB0vlaAhHQKcEsNPP9k11fZQoaAZHQHJXAnlXA/NoB0veaAhHQKcE1PO6d2B1fZQoaAZHQHEHMl9jPOZoB0vXaAhHQKcE7L/0dzZ1fZQoaAZHQHCQsj3VTaVoB0vcaAhHQKcFLzT4L1F1fZQoaAZHQHB4v6be/HpoB0vjaAhHQKcFfScbzbx1fZQoaAZHQHGIaLfk3jxoB0v6aAhHQKcFlY150KZ1fZQoaAZHQHJrh4Y77sRoB00CAWgIR0CnBfKFqSHNdX2UKGgGR0A23Cj1wo9caAdLn2gIR0CnBj8ZccENdX2UKGgGR0BxGjBl+VkdaAdL12gIR0CnBpxHPNVzdX2UKGgGR0BR8HIMjNY9aAdLoWgIR0CnBrdnK4hEdX2UKGgGR0Bx5ZEhJRO2aAdL12gIR0CnBsi0OVgQdX2UKGgGR0By8at0V8CxaAdL8GgIR0CnBuvmxMWXdX2UKGgGR0BStREBsANoaAdLxWgIR0CnBzpwCKaYdX2UKGgGR0BzLYSqU/wBaAdLyGgIR0CnB2Pv0AcUdX2UKGgGR0BuBAPGyX2NaAdL42gIR0CnB2we/5+IdX2UKGgGR0Bysgzdk8RuaAdL/WgIR0CnB4CyyD7JdX2UKGgGR0BxukAAAAAAaAdLzGgIR0CnCBoHLRrrdX2UKGgGR0ByJDpLVWjoaAdL2mgIR0CnCD1wo9cKdX2UKGgGR0Byxy9RJmNBaAdL1WgIR0CnCG83dbgTdX2UKGgGR0ByskjeKsMiaAdL/mgIR0CnCKj5j6N3dX2UKGgGR0BzEJs9B8hLaAdL3WgIR0CnCMMo+fRNdX2UKGgGR0BvN3qZ+hGpaAdL22gIR0CnCRmwRoRJdX2UKGgGR0BxgbsdDIBBaAdL9GgIR0CnCSd+w1R+dX2UKGgGR0Bx2mGKyfL+aAdL0mgIR0CnCaTGgi/xdX2UKGgGR0BymRflZHNHaAdL4GgIR0CnCfRJNCZ4dX2UKGgGR0Bx5FJoTPB0aAdNBgFoCEdApwoTIYFaCHV9lChoBkdAcrrOymhufmgHS8BoCEdApwo2wzLwF3VlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 496,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -87,13 +87,13 @@
87
  "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
94
  "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
  }
99
  }
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7823db8c4670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7823db8c4700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7823db8c4790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7823db8c4820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7823db8c48b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7823db8c4940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7823db8c49d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7823db8c4a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7823db8c4af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7823db8c4b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7823db8c4c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7823db8c4ca0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7823db872680>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1733588936148145459,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADz3zyPun+6P2I+vHIZFrwCley6iisDPQAAgD8AAAAAmlraPAUdmbugi3A89cKcPMPWA73ekYQ9AACAPwAAgD8znkC9ro+Hun6ga7iKJK42hcgXu1oFgTcAAIA/AACAPzNbmrziNY0/o7KJvfmf5L6viGW9SvqBPQAAAAAAAAAAmoBbvYjrgz3ZeKi9Os6AvnIJ173+qFu9AAAAAAAAAABmu0A9EAS0P0+Lvj5sOSe+TP1qPYZyHz4AAAAAAAAAAK38RD4M00I/qmGMvlJys756V/W8EyeavQAAAAAAAAAAAHw/PSOacz0youE8WnpVvgWgmzyRH7M8AAAAAAAAAABNAYS9MHS4PuVVsb1+V4S+DBi1vZjdOD0AAAAAAAAAAJoyBT3hRKm6dRIPObp/V7Z7J/S5/cwiuAAAgD8AAIA/5mvqPZetFj/iHxC+QMySvtpgVD1Cwqq9AAAAAAAAAABmesC8WRYFPxmWo7zBxpO+OAn7vPLWTb0AAAAAAAAAADOexbyYiBA/dABGPi0/nL6q53U9YDnNOgAAAAAAAAAAsxlFPSkkd7pkbYe1E5QAsRQNMjtqoLo0AACAPwAAgD/NVCu9ZB6rP26nj77t1NC+dYcFPPi+gr0AAAAAAAAAAJq+iz3gCbk/FYk4Pwa0hj0RVGS8/HUAPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG2HMDOkcjuMAWyUS/2MAXSUR0CQ/RDEm6XjdX2UKGgGR0BxxnuTibUgaAdNDwFoCEdAkP2t9tuUEHV9lChoBkdAcQcCA+Y+jmgHTREBaAhHQJD92HtWuHN1fZQoaAZHQHDWRk7OmixoB00dAWgIR0CQ/idkauOkdX2UKGgGR0Bxs3/EOy3TaAdNRgFoCEdAkQCwsbvPT3V9lChoBkdAcuv/0NBnjGgHTQ4BaAhHQJEBJW+49X91fZQoaAZHQHMLQFgUlAxoB007AWgIR0CRAeLHuJDWdX2UKGgGR0ByABXFLnLaaAdNHgFoCEdAkQLKTKT0QXV9lChoBkdAcEkxjJ+2E2gHTRgBaAhHQJEDSpaRp111fZQoaAZHQHHZGseXAuZoB00hAWgIR0CRA3euFHrhdX2UKGgGR0BvVHvF3pwCaAdNDQFoCEdAkQQ8nNPgvXV9lChoBkdAc1UbExZdOmgHTQgBaAhHQJEEgEaESM91fZQoaAZHQHJAcI7eVLVoB0v9aAhHQJEElc6eXiR1fZQoaAZHQHIvnEdeY2NoB00dAWgIR0CRBn+6y0KJdX2UKGgGR0ByXuNjslcAaAdL9GgIR0CRBog3cYZVdX2UKGgGR0Bv5cuL74zraAdL/mgIR0CRB16yjYZmdX2UKGgGR0Bw7Tgk1MufaAdNMQFoCEdAkQgla8pTdnV9lChoBkdAcBFsvZh8Y2gHTR0BaAhHQJEI502cawV1fZQoaAZHQHKEKQaJhv1oB008AWgIR0CRCco6CDmKdX2UKGgGR0Bwk6gJ1JUYaAdNAwFoCEdAkQxH1e0G/3V9lChoBkdAcR2qynk1dmgHS/ZoCEdAkQyMsUZeiXV9lChoBkdAb8J/2Cdz4mgHTVMBaAhHQJENPxXnyNJ1fZQoaAZHQGvDFjEvTPVoB00FAWgIR0CRDgMOPNmldX2UKGgGR0Bx4UINVinYaAdNSgFoCEdAkQ41ev6j33V9lChoBkdAclSNWEK3NWgHTSgBaAhHQJEOZ0ZFXq91fZQoaAZHQG1gMA/9pAVoB00YAWgIR0CRDxNet0V8dX2UKGgGR0BxNLhqCYkWaAdNdgFoCEdAkQ8eWWyC4HV9lChoBkdAcKx9+w1R+GgHTQEBaAhHQJEQhDG96C11fZQoaAZHQG2wqRuCPIZoB01FAWgIR0CRENr30wrUdX2UKGgGR0BuIJMxoIv8aAdNJgFoCEdAkRHRY/3WWnV9lChoBkdAcsennuAqeGgHS/toCEdAkRKQGbCrLnV9lChoBkdAbUFfuTibUmgHTRQBaAhHQJESv/Lkjop1fZQoaAZHQHHaWtp22XtoB005AWgIR0CRE0bYK6WgdX2UKGgGR0BgPTX8O09haAdN6ANoCEdAkRRAV45cT3V9lChoBkdAcvc9wm3OOmgHTS8BaAhHQJEVOnZTQ3R1fZQoaAZHQHH1aDPGACpoB0v2aAhHQJEVZRLsa891fZQoaAZHQHGv6rilzltoB00HAWgIR0CRFiyeqaPTdX2UKGgGR0BtwVbRnezlaAdL92gIR0CRFwB2wFC+dX2UKGgGR0BwZDSRbKRuaAdNBQFoCEdAkRdXu/k/8nV9lChoBkdAcfGoLG7z1GgHS/toCEdAkRdYi1RceXV9lChoBkdAcCGSFXaJymgHTRgBaAhHQJEY56KLsKN1fZQoaAZHQHNmdmlImPZoB00mAWgIR0CRGV58Sf16dX2UKGgGR0By6gFY+0PZaAdNCAFoCEdAkSwNNahYeXV9lChoBkdAcf+vmozeoGgHTSQBaAhHQJEsGbI91U51fZQoaAZHQGyTDC53C9BoB00xAWgIR0CRLE35N47jdX2UKGgGR0BwtKM2m52AaAdL/mgIR0CRLZfkmx+sdX2UKGgGR0BtHED8tPHlaAdNHAFoCEdAkS5SR8twrHV9lChoBkdAcYZ3CsOoYWgHTS8BaAhHQJEu+zLOiWV1fZQoaAZHQGzbH8KohpxoB00JAWgIR0CRL4nQY1pCdX2UKGgGR0Bsziy+pOvdaAdNCAFoCEdAkTDGlQ/HHXV9lChoBkdAczR8VYZEUmgHTRACaAhHQJEzHP0I1Lt1fZQoaAZHQHCkSOBDohZoB00vAWgIR0CRMxg13t8edX2UKGgGR0BwcHEyckMTaAdNCQFoCEdAkTP4VM23rnV9lChoBkdAcXlEwWWQfmgHTSkBaAhHQJE1Fvddmg91fZQoaAZHQHDoYd+5OJtoB01KAWgIR0CRNYwSamXPdX2UKGgGR0ByGFTZQHiWaAdNRAFoCEdAkTbGexwAEXV9lChoBkdAbkRMB6rvLGgHTSsBaAhHQJE30p2ECeV1fZQoaAZHQHH5s5wOvuBoB00wAWgIR0CROHTb349HdX2UKGgGR0BzBjIo3JgcaAdNBAFoCEdAkTh+JP69CnV9lChoBkdAcfXrDZUT+WgHTRgBaAhHQJE5Wlk6Lfl1fZQoaAZHQG9ISrYGt6poB00hAWgIR0CROYeZXuE3dX2UKGgGR0ByBvxG2CumaAdNEQFoCEdAkToIGUwBYHV9lChoBkdAbaKQ9zOopGgHTSYBaAhHQJE7QQ+UyHp1fZQoaAZHQG3rQhwEQoVoB00RAWgIR0CRO2X3xnWbdX2UKGgGR0BwJR7b+Lm7aAdNIQFoCEdAkTuPboKUmnV9lChoBkdAcfQE/jbSJGgHTQcBaAhHQJE74yM1jy51fZQoaAZHQHGTsf7rLQpoB00QAWgIR0CRPYQXhwVCdX2UKGgGR0BxZx97WuoxaAdL3WgIR0CRPmo5ggHNdX2UKGgGR0ByTT3pOerdaAdNEQFoCEdAkT773fyf+XV9lChoBkdAcADJW/8EV2gHTSkBaAhHQJE/CtmtheB1fZQoaAZHQHKa0sFt8/loB00KAWgIR0CRPxydWhh6dX2UKGgGR0BydHCAMDwIaAdL8mgIR0CRP/BlcyFgdX2UKGgGR0BvsPt0FKTTaAdNCwFoCEdAkUGAy6+WW3V9lChoBkdAbH48274BWGgHTRABaAhHQJFBqUgSvkl1fZQoaAZHQHEQZxiobXJoB00SAWgIR0CRQuCFsYVJdX2UKGgGR0By79l5GBnSaAdNqAFoCEdAkUL/pljEvXV9lChoBkdAcO8kxASnL2gHTSMBaAhHQJFDX51vETB1fZQoaAZHQHAi/NRm9QJoB00cAWgIR0CRQ9RA8jiXdX2UKGgGR0Bwz0jUutfYaAdNDQFoCEdAkUR45T6zmnV9lChoBkdAcG/TDfm9x2gHTRkBaAhHQJFFK2qkuYh1fZQoaAZHQHFfkkGA09BoB00WAWgIR0CRRXA9V3lkdX2UKGgGR0Bxlk1DSgGsaAdNMgFoCEdAkUXM+u/1x3V9lChoBkdAb2MUu+RHPWgHTQMBaAhHQJFGerR0EHN1fZQoaAZHQHGspxR2r4poB00YAWgIR0CRSCZoPCl8dX2UKGgGR0BxCd97WuoxaAdNFQFoCEdAkUimys0YTHV9lChoBkdAcVy0P6KtP2gHTSMBaAhHQJFJG7iADq51fZQoaAZHQHGH6suFpPBoB0vkaAhHQJFJg5hjOLR1fZQoaAZHQHDfvNVzZHxoB00sAWgIR0CRSXrGza9LdX2UKGgGR0Bya+YPXkHVaAdNEwFoCEdAkUrMrqdH2HV9lChoBkdAciUA0sOG02gHS+5oCEdAkUrL1h9b5nV9lChoBkdAcq5SWqtHQWgHS+VoCEdAkUtRRZU1h3V9lChoBkdAb7rjghr302gHTW8BaAhHQJFMX6WPcSJ1fZQoaAZHQHIJUsasIVxoB00qAWgIR0CRTSsnRb8ndX2UKGgGR0BxhWwpvxYraAdNOQFoCEdAkU1cYMvysnV9lChoBkdAcDJ56dDpkmgHTRABaAhHQJFNavLX+VF1fZQoaAZHQHGrMmWt2cJoB00DAWgIR0CRTeF3Y+SsdX2UKGgGR0BzdcVpKzzFaAdNAQFoCEdAkVC9knTiKnV9lChoBkdAcFCZfD1oQGgHTUMBaAhHQJFRi+oLofV1fZQoaAZHQHB0ml/H5rRoB0v8aAhHQJFRqyX2M851fZQoaAZHQHKtBoRIz31oB01yAWgIR0CRUb+fywwCdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
87
  "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
94
  "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
  }
99
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d07d48edef6d848c2b2c215ee03243dbc313c2d8894b3776feddd5c3d13fe2ec
3
  size 87978
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b92c1e6c624692a8a4b4b92d0e8059b657b54cdd8086f749ab94746c4264634c
3
  size 87978
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bdd6cb623c698050a160e11d1238cff11d62c467ea06bbda3e2eafed6ab814c1
3
  size 43634
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:953cb595a28a094937020fae0f9cb016fea7edcce2faecd449ef51ca717e20a8
3
  size 43634
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,9 +1,9 @@
1
  - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
- - PyTorch: 2.3.1+cu121
5
  - GPU Enabled: False
6
  - Numpy: 1.26.4
7
- - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
9
  - OpenAI Gym: 0.25.2
 
1
  - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu121
5
  - GPU Enabled: False
6
  - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
  - Gymnasium: 0.28.1
9
  - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"env_id": "LunarLander-v2", "mean_reward": -7.066432356477476, "std_reward": 99.53911593703612, "n_evaluation_episodes": 10, "eval_datetime": "2024-12-06T20:12:32.768628"}
 
1
+ {"mean_reward": 267.9760558558527, "std_reward": 19.99623912411539, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-07T17:02:41.475078"}