Zahaab commited on
Commit
044074c
1 Parent(s): 55429db

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -1
README.md CHANGED
@@ -8,4 +8,49 @@ pipeline_tag: image-classification
8
  tags:
9
  - aircraft
10
  - airplane
11
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  tags:
9
  - aircraft
10
  - airplane
11
+ ---
12
+ # Aircraft Classifier
13
+
14
+ This repository contains a pre-trained PyTorch model for classifying aircraft types based on images. The model file `aircraft_classifier.pth` can be downloaded and used to classify images of various aircraft models.
15
+
16
+ ## Model Overview
17
+
18
+ The `aircraft_classifier.pth` file is a PyTorch model trained on a dataset of aircraft images. It achieves a test accuracy of **75.26%** on the FGVC Aircraft test dataset, making it a reliable choice for identifying aircraft types. The model is designed to be lightweight and efficient for real-time applications.
19
+
20
+ ## Requirements
21
+
22
+ - **Python** 3.7 or higher
23
+ - **PyTorch** 1.8 or higher
24
+ - **torchvision** (for loading and preprocessing images)
25
+
26
+ ## Usage
27
+
28
+ 1. Clone this repository and install dependencies.
29
+ ```bash
30
+ git clone <repository-url>
31
+ cd <repository-folder>
32
+ pip install torch torchvision
33
+ ```
34
+ 2. Load and use the model in your Python script:
35
+ ```python
36
+ import torch
37
+ from torchvision import transforms
38
+ from PIL import Image
39
+
40
+ # Load the model
41
+ model = torch.load('aircraft_classifier.pth')
42
+ model.eval() # Set to evaluation mode
43
+
44
+ # Load and preprocess the image
45
+ transform = transforms.Compose([
46
+ transforms.Resize((224, 224)),
47
+ transforms.ToTensor(),
48
+ ])
49
+ img = Image.open('path_to_image.jpg')
50
+ img = transform(img).view(1, 3, 224, 224) # Reshape to (1, 3, 224, 224) for batch processing
51
+
52
+ # Predict
53
+ with torch.no_grad():
54
+ output = model(img)
55
+ _, predicted = torch.max(output, 1)
56
+ print("Predicted Aircraft Type:", predicted.item())