File size: 3,565 Bytes
41df119 9f4c1de f950831 9f4c1de 41df119 9f4c1de 41df119 9f4c1de 41df119 f658ab0 9f4c1de c049ac6 9f4c1de c049ac6 119de29 c049ac6 41df119 9f4c1de 41df119 9f4c1de 41df119 9f4c1de 41df119 9f4c1de 41df119 9f4c1de 41df119 9f4c1de 41df119 9f4c1de 41df119 9f4c1de 41df119 9f4c1de f68b642 119de29 9f4c1de 8d460a7 9f4c1de f68b642 41df119 9f4c1de 41df119 f658ab0 c049ac6 41df119 9f4c1de 41df119 8d460a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
library_name: transformers
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-satellite-terrain
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-finetuned-segments-satellite-terrain
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the ZeeeWP/terrain_map dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8455
- Mean Iou: 0.1918
- Mean Accuracy: 0.3314
- Overall Accuracy: 0.4947
- Accuracy Unlabeled: nan
- Accuracy Sand: 0.4672
- Accuracy Cliff: 0.6054
- Accuracy Bedrock flat: 0.6452
- Accuracy Bedrock lowhill: 0.2043
- Accuracy Bedrock highhill: 0.1049
- Accuracy Gravel low hill: 0.2929
- Accuracy Gravel high hill: 0.0
- Iou Unlabeled: 0.0
- Iou Sand: 0.2825
- Iou Cliff: 0.4353
- Iou Bedrock flat: 0.4798
- Iou Bedrock lowhill: 0.0568
- Iou Bedrock highhill: 0.0362
- Iou Gravel low hill: 0.2437
- Iou Gravel high hill: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Sand | Accuracy Cliff | Accuracy Bedrock flat | Accuracy Bedrock lowhill | Accuracy Bedrock highhill | Accuracy Gravel low hill | Accuracy Gravel high hill | Iou Unlabeled | Iou Sand | Iou Cliff | Iou Bedrock flat | Iou Bedrock lowhill | Iou Bedrock highhill | Iou Gravel low hill | Iou Gravel high hill |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:--------------:|:---------------------:|:------------------------:|:-------------------------:|:------------------------:|:-------------------------:|:-------------:|:--------:|:---------:|:----------------:|:-------------------:|:--------------------:|:-------------------:|:--------------------:|
| 1.7741 | 5.0 | 20 | 1.9971 | 0.1727 | 0.3113 | 0.4575 | nan | 0.4371 | 0.6817 | 0.5485 | 0.1547 | 0.2136 | 0.1422 | 0.0012 | 0.0 | 0.2559 | 0.4600 | 0.4535 | 0.0433 | 0.0367 | 0.1315 | 0.0010 |
| 1.6412 | 10.0 | 40 | 1.8455 | 0.1918 | 0.3314 | 0.4947 | nan | 0.4672 | 0.6054 | 0.6452 | 0.2043 | 0.1049 | 0.2929 | 0.0 | 0.0 | 0.2825 | 0.4353 | 0.4798 | 0.0568 | 0.0362 | 0.2437 | 0.0 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|