File size: 3,565 Bytes
41df119
 
9f4c1de
f950831
9f4c1de
 
 
 
 
 
 
41df119
 
9f4c1de
 
41df119
9f4c1de
41df119
f658ab0
9f4c1de
c049ac6
 
 
 
9f4c1de
c049ac6
 
 
 
 
 
 
119de29
c049ac6
 
 
 
 
 
 
41df119
9f4c1de
41df119
9f4c1de
41df119
9f4c1de
41df119
9f4c1de
41df119
9f4c1de
41df119
9f4c1de
41df119
9f4c1de
41df119
9f4c1de
41df119
9f4c1de
f68b642
119de29
 
9f4c1de
8d460a7
9f4c1de
f68b642
41df119
9f4c1de
41df119
f658ab0
 
c049ac6
 
41df119
 
9f4c1de
41df119
8d460a7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-satellite-terrain
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-finetuned-segments-satellite-terrain

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the ZeeeWP/terrain_map dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8455
- Mean Iou: 0.1918
- Mean Accuracy: 0.3314
- Overall Accuracy: 0.4947
- Accuracy Unlabeled: nan
- Accuracy Sand: 0.4672
- Accuracy Cliff: 0.6054
- Accuracy Bedrock flat: 0.6452
- Accuracy Bedrock lowhill: 0.2043
- Accuracy Bedrock highhill: 0.1049
- Accuracy Gravel low hill: 0.2929
- Accuracy Gravel high hill: 0.0
- Iou Unlabeled: 0.0
- Iou Sand: 0.2825
- Iou Cliff: 0.4353
- Iou Bedrock flat: 0.4798
- Iou Bedrock lowhill: 0.0568
- Iou Bedrock highhill: 0.0362
- Iou Gravel low hill: 0.2437
- Iou Gravel high hill: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Sand | Accuracy Cliff | Accuracy Bedrock flat | Accuracy Bedrock lowhill | Accuracy Bedrock highhill | Accuracy Gravel low hill | Accuracy Gravel high hill | Iou Unlabeled | Iou Sand | Iou Cliff | Iou Bedrock flat | Iou Bedrock lowhill | Iou Bedrock highhill | Iou Gravel low hill | Iou Gravel high hill |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:--------------:|:---------------------:|:------------------------:|:-------------------------:|:------------------------:|:-------------------------:|:-------------:|:--------:|:---------:|:----------------:|:-------------------:|:--------------------:|:-------------------:|:--------------------:|
| 1.7741        | 5.0   | 20   | 1.9971          | 0.1727   | 0.3113        | 0.4575           | nan                | 0.4371        | 0.6817         | 0.5485                | 0.1547                   | 0.2136                    | 0.1422                   | 0.0012                    | 0.0           | 0.2559   | 0.4600    | 0.4535           | 0.0433              | 0.0367               | 0.1315              | 0.0010               |
| 1.6412        | 10.0  | 40   | 1.8455          | 0.1918   | 0.3314        | 0.4947           | nan                | 0.4672        | 0.6054         | 0.6452                | 0.2043                   | 0.1049                    | 0.2929                   | 0.0                       | 0.0           | 0.2825   | 0.4353    | 0.4798           | 0.0568              | 0.0362               | 0.2437              | 0.0                  |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3