--- library_name: transformers license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-satellite-terrain results: [] --- # segformer-b0-finetuned-segments-satellite-terrain This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the ZeeeWP/terrain_map dataset. It achieves the following results on the evaluation set: - Loss: 1.6101 - Mean Iou: 0.1907 - Mean Accuracy: 0.3530 - Overall Accuracy: 0.4780 - Accuracy Unlabeled: nan - Accuracy Sand: 0.5878 - Accuracy Cliff: 0.7663 - Accuracy Bedrock flat: 0.7396 - Accuracy Bedrock lowhill: 0.0135 - Accuracy Bedrock highhill: 0.0 - Accuracy Gravel low hill: 0.3636 - Accuracy Gravel high hill: 0.0 - Iou Unlabeled: 0.0 - Iou Sand: 0.4409 - Iou Cliff: 0.4125 - Iou Bedrock flat: 0.3709 - Iou Bedrock lowhill: 0.0132 - Iou Bedrock highhill: 0.0 - Iou Gravel low hill: 0.2884 - Iou Gravel high hill: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Sand | Accuracy Cliff | Accuracy Bedrock flat | Accuracy Bedrock lowhill | Accuracy Bedrock highhill | Accuracy Gravel low hill | Accuracy Gravel high hill | Iou Unlabeled | Iou Sand | Iou Cliff | Iou Bedrock flat | Iou Bedrock lowhill | Iou Bedrock highhill | Iou Gravel low hill | Iou Gravel high hill | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:--------------:|:---------------------:|:------------------------:|:-------------------------:|:------------------------:|:-------------------------:|:-------------:|:--------:|:---------:|:----------------:|:-------------------:|:--------------------:|:-------------------:|:--------------------:| | 1.8047 | 2.5 | 20 | 1.9790 | 0.1684 | 0.3173 | 0.4408 | nan | 0.4519 | 0.8376 | 0.5959 | 0.0301 | 0.0 | 0.3053 | 0.0 | 0.0 | 0.3641 | 0.3607 | 0.3496 | 0.0296 | 0.0 | 0.2429 | 0.0 | | 1.5102 | 5.0 | 40 | 1.7599 | 0.1694 | 0.3192 | 0.4582 | nan | 0.3901 | 0.8340 | 0.6609 | 0.0192 | 0.0 | 0.3305 | 0.0 | 0.0 | 0.3239 | 0.3799 | 0.3675 | 0.0189 | 0.0 | 0.2649 | 0.0 | | 1.4458 | 7.5 | 60 | 1.6088 | 0.1873 | 0.3457 | 0.4639 | nan | 0.5881 | 0.7480 | 0.7632 | 0.0081 | 0.0 | 0.3122 | 0.0 | 0.0 | 0.4691 | 0.4114 | 0.3544 | 0.0080 | 0.0 | 0.2555 | 0.0 | | 1.568 | 10.0 | 80 | 1.6101 | 0.1907 | 0.3530 | 0.4780 | nan | 0.5878 | 0.7663 | 0.7396 | 0.0135 | 0.0 | 0.3636 | 0.0 | 0.0 | 0.4409 | 0.4125 | 0.3709 | 0.0132 | 0.0 | 0.2884 | 0.0 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.4.1 - Datasets 2.14.6 - Tokenizers 0.19.1