File size: 2,291 Bytes
edb1538 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-large-extraction-cnndm_4000-all
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-large-extraction-cnndm_4000-all
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7290
- Rouge1: 35.0775
- Rouge2: 15.2209
- Rougel: 30.1796
- Rougelsum: 30.1599
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 24
- seed: 1799
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.1464 | 0.4 | 200 | 1.8323 | 35.2242 | 15.3495 | 30.142 | 30.1331 | 19.0 |
| 1.9817 | 0.8 | 400 | 1.7729 | 34.3798 | 14.7287 | 29.5447 | 29.6052 | 18.986 |
| 1.8842 | 1.2 | 600 | 1.7602 | 34.5807 | 15.1707 | 29.7768 | 29.8081 | 18.986 |
| 1.8129 | 1.6 | 800 | 1.7629 | 34.5103 | 15.231 | 29.9182 | 29.9333 | 19.0 |
| 1.8238 | 2.0 | 1000 | 1.7290 | 35.0775 | 15.2209 | 30.1796 | 30.1599 | 19.0 |
| 1.7199 | 2.4 | 1200 | 1.7354 | 34.6552 | 15.7256 | 30.1894 | 30.2207 | 18.998 |
| 1.7128 | 2.8 | 1400 | 1.7407 | 34.7198 | 15.5771 | 30.0585 | 30.0442 | 19.0 |
| 1.6816 | 3.2 | 1600 | 1.7508 | 34.9611 | 15.5792 | 30.3518 | 30.3638 | 19.0 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.5.1
- Tokenizers 0.12.1
|