File size: 2,511 Bytes
edb1538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f390ebe
edb1538
f390ebe
 
 
 
 
 
edb1538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f390ebe
edb1538
 
 
 
 
f390ebe
 
 
 
 
 
 
 
 
 
 
edb1538
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-large-extraction-cnndm_4000-all
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-large-extraction-cnndm_4000-all

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7531
- Rouge1: 35.0348
- Rouge2: 15.5615
- Rougel: 30.2628
- Rougelsum: 30.218
- Gen Len: 18.994

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 24
- seed: 1799
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.6013        | 0.4   | 200  | 1.7818          | 34.9655 | 15.0698 | 29.8381 | 29.7984   | 19.0    |
| 1.5864        | 0.8   | 400  | 1.7662          | 33.9055 | 14.3357 | 29.3382 | 29.3206   | 19.0    |
| 1.5214        | 1.2   | 600  | 1.7988          | 34.856  | 15.4214 | 29.9006 | 29.8346   | 19.0    |
| 1.4759        | 1.6   | 800  | 1.8195          | 33.7856 | 14.6215 | 29.2806 | 29.2144   | 19.0    |
| 1.5068        | 2.0   | 1000 | 1.7686          | 34.828  | 14.8614 | 29.761  | 29.7316   | 18.998  |
| 1.5696        | 2.4   | 1200 | 1.7531          | 35.0348 | 15.5615 | 30.2628 | 30.218    | 18.994  |
| 1.5671        | 2.8   | 1400 | 1.7651          | 34.0963 | 15.2973 | 29.8032 | 29.7499   | 19.0    |
| 1.5385        | 3.2   | 1600 | 1.7834          | 33.9286 | 14.8702 | 29.2844 | 29.2384   | 19.0    |
| 1.4972        | 3.6   | 1800 | 1.7808          | 34.6569 | 15.1071 | 29.8532 | 29.8168   | 19.0    |
| 1.4991        | 4.0   | 2000 | 1.7640          | 34.7095 | 15.0358 | 29.6992 | 29.672    | 19.0    |
| 1.4504        | 4.4   | 2200 | 1.7944          | 34.9119 | 15.3942 | 29.9696 | 29.9097   | 19.0    |


### Framework versions

- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.5.1
- Tokenizers 0.12.1