File size: 13,789 Bytes
e27c8d5
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b9056635360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b90566353f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b9056635480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b9056635510>", "_build": "<function ActorCriticPolicy._build at 0x7b90566355a0>", "forward": "<function ActorCriticPolicy.forward at 0x7b9056635630>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b90566356c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b9056635750>", "_predict": "<function ActorCriticPolicy._predict at 0x7b90566357e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b9056635870>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b9056635900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b9056635990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b90578b9480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729088185980106045, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACQ3ruu7ZW6ys5uOsRIN7a4sL26AgSKuQAAgD8AAIA/gMnNPW9/jD6SeQi+/hWCvsJXM71KuDU9AAAAAAAAAACaASU9bKXUPktQfD0HM1C+NrJhPT0qyzsAAAAAAAAAADMMZj0Yl6Y/BuwGP7KVBr/gnD69KGq3OwAAAAAAAAAAzaiVPJJ0lj6qgfe9PO5pvpuHwLxEA4A7AAAAAAAAAABNPHE9SY5DPU5zwD3KgoS+3rB6PSWFXD0AAAAAAAAAAADAaz3EFJI+4w3qPD2Idb7ntRU98YC3OwAAAAAAAAAAzWwtvFK68z5m84Q9BIBnviiJED3bvOS8AAAAAAAAAADaD4A9AzNBvPXXFLxRc189c4GmPXaDML4AAIA/AACAPwBXCr7kL7U+9feCPok5Tr45yJs96yhTPQAAAAAAAAAAM6GYPUz1HD/tJdi9b8OpviESJr0IQ5S9AAAAAAAAAACzqry9KYxtPqttvj1jcGi+IgCaPIyShb0AAAAAAAAAAM2apzzhMIG6QkGcNs2VuzCbSuY5Ynq2tQAAgD8AAIA/pqXdvZTB2D6W7Yk+T22NvhPBWT2mGSa9AAAAAAAAAADzOcU9j9AoPpuuEL4LcnW+mzQWvJpvj70AAAAAAAAAAFNxMD64lZs/FQPjPg1vjL7fAWo+nCZLPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGxd0r08NhGMAWyUTVYBjAF0lEdAl3TzRlYlp3V9lChoBkdAcnKpnYg7o2gHTUABaAhHQJd11KbrkbR1fZQoaAZHQHHqw0TDfm9oB01HAWgIR0CXdft4iX6ZdX2UKGgGR0BxBtj6N2kjaAdNWwFoCEdAl3dR7E5yVHV9lChoBkdARE867ulXR2gHTQABaAhHQJd3XN9ph4N1fZQoaAZHQHF0MhLXcxloB012AWgIR0CXd4YhMajvdX2UKGgGR0Bu9DriVB2PaAdNJQFoCEdAl3fdVzZHu3V9lChoBkdAb/0QqZtvXWgHTT4BaAhHQJeNIzGgi/x1fZQoaAZHQG2edtdiUgVoB01AAWgIR0CXjbgpBomHdX2UKGgGR0Bwmb6ZYxL1aAdNWwFoCEdAl44pv5xionV9lChoBkdAa2g6PKdQPGgHTT0BaAhHQJeO/p/wy7B1fZQoaAZHQG60eFUQ041oB00rAWgIR0CXkJnqmj0udX2UKGgGR0ByNjAXVLBbaAdNLQFoCEdAl5C9EofCAXV9lChoBkdAcUrSxZ+x4mgHTVoBaAhHQJeTXS9du511fZQoaAZHQG9n3Gn4wh5oB02MAWgIR0CXk3Uwi7kGdX2UKGgGR0BySkAWBSUDaAdNUwFoCEdAl5OaE384xXV9lChoBkdAcUWMJx//emgHTSABaAhHQJeUlelbeM11fZQoaAZHQEKI7QswtapoB00iAWgIR0CXlJ4ku6ErdX2UKGgGR0BxIMBeXzDoaAdNVQFoCEdAl5S3trsSkHV9lChoBkdAcASw3o9s8GgHTTQBaAhHQJeVYi0OVgR1fZQoaAZHQHJ9MsYl6Z9oB005AWgIR0CXleXizcASdX2UKGgGR0BwMI74i5d4aAdNjgFoCEdAl5anhbW3B3V9lChoBkdAcQ/dnCfpU2gHTTIBaAhHQJeYrkp7TlV1fZQoaAZHQGqX0TDfm9xoB01BAWgIR0CXmL4gzP8idX2UKGgGR0BwHLjS5RTCaAdNnAJoCEdAl5nWtlqagHV9lChoBkdAcYf3kPtlZ2gHTTYBaAhHQJebWiM5wOx1fZQoaAZHQG/ev+n62v1oB02CAWgIR0CXnFg0j1PFdX2UKGgGR0Bx2yWfK6nSaAdNbQFoCEdAl51WlQ/HHXV9lChoBkdAcZefapPykWgHTTIBaAhHQJeeBSBK+SN1fZQoaAZHQHFJKHO8kD9oB01FAWgIR0CXnoaya/h3dX2UKGgGR0Bt1aqOtGNJaAdNMgFoCEdAl57553Tuv3V9lChoBkdAboocWj4592gHTV4BaAhHQJefUW1twaR1fZQoaAZHQGyv8sUZeiVoB01NAWgIR0CXn+3Td+G5dX2UKGgGR0BxIMzl90A+aAdNTAFoCEdAl5/+h4+r2nV9lChoBkdAcWhf5ULlWGgHTS0BaAhHQJegMUoKD011fZQoaAZHQGx8vECNjsloB01fAWgIR0CXoRz8P4EfdX2UKGgGR0ByP6U2UB4maAdNSQFoCEdAl6PEJ8fFJnV9lChoBkdAceW7TUiIL2gHTSoBaAhHQJej92fTTfB1fZQoaAZHQG52uDzyz5ZoB02PAWgIR0CXpAuMMqjKdX2UKGgGR0Bs/eO4oZydaAdNUAFoCEdAl6QSYPXkHXV9lChoBkdARbBjlPrOaGgHS/NoCEdAl6UtPHktE3V9lChoBkdAcMrEMb3oLWgHTV0BaAhHQJenQhTwUg11fZQoaAZHQHD42w7kn1FoB01NAWgIR0CXp5yhBZ6ldX2UKGgGR0BxM3W8RL9NaAdNGAFoCEdAl6lrPppvgnV9lChoBkdAc1FlqJuVHGgHTTwBaAhHQJepo7gbZOB1fZQoaAZHQG+vLU9ZA6doB01fAWgIR0CXqeIjGDL9dX2UKGgGR0Bxz5TuOS4faAdNUQFoCEdAl6nqZ6Uqx3V9lChoBkdAcFQLG7z06GgHTTwBaAhHQJep+MbWEsd1fZQoaAZHQHHlv2TPjXFoB01bAWgIR0CXq9vUz9CNdX2UKGgGR0BxCbf/FR51aAdNbwFoCEdAl6w9eUpuuXV9lChoBkdAb+tlmvnr6mgHTXgBaAhHQJeuAIv8IiV1fZQoaAZHQG4rQBYFJQNoB00xAWgIR0CXrpKBNEgGdX2UKGgGR0BvBIsAeaKDaAdNOwFoCEdAl8JII4VARnV9lChoBkdAU/05HVf/m2gHTegDaAhHQJfCqM4tHx11fZQoaAZHQHJhTZL7GedoB00vAWgIR0CXwxM+eOGTdX2UKGgGR0BwG1nyup0faAdNdwFoCEdAl8QpW/8EV3V9lChoBkdAcDXlRxcVxmgHTX8BaAhHQJfEKkWRA8l1fZQoaAZHQHBkYVdonKJoB01TAWgIR0CXxfUmUnogdX2UKGgGR0ByLgLqlgtwaAdNEQFoCEdAl8YsUZeiSXV9lChoBkdAcG2/Y8Md92gHTTYBaAhHQJfHXF4s3AF1fZQoaAZHQHELLz06HTJoB00+AWgIR0CXx2S6UaAGdX2UKGgGR0ByQOsZHd43aAdNUQFoCEdAl8fNLHuJDXV9lChoBkdAcpXB+F10T2gHTYoBaAhHQJfIAcDKYAt1fZQoaAZHQHI+gDmr8zhoB01kAWgIR0CXyNauOjqOdX2UKGgGR0Bw9QqFyq+8aAdNRwFoCEdAl8oboOhCdHV9lChoBkdAcKj9RaX8fmgHTVQBaAhHQJfKLi2lVLl1fZQoaAZHQGyIRs/IKdBoB01LAWgIR0CXzGJNCZ4OdX2UKGgGR0BtJEzyjHn2aAdNNQFoCEdAl8x2XTmW+3V9lChoBkdAcSMuloDgZWgHTU4BaAhHQJfM8DLbHp91fZQoaAZHQHF+wKjSG8FoB01dAWgIR0CXzi3I+4b0dX2UKGgGR0BwzFXuE25yaAdNsgFoCEdAl89T3dsSCnV9lChoBkdAbtHhsImgJ2gHTVsBaAhHQJfPXcclw991fZQoaAZHQHDLBTwUg0VoB01fAWgIR0CXz377sOXmdX2UKGgGR0Bv9rGipNsWaAdNUAFoCEdAl9Ewgs9SuXV9lChoBkdAchq4SYgJTmgHTVkBaAhHQJfRQvexfOV1fZQoaAZHQEaF9rGipNtoB0vwaAhHQJfSKEUTL4h1fZQoaAZHQHLA8k+otMBoB01XAWgIR0CX0q4vN/vwdX2UKGgGR0BwVDRlYlpoaAdNSwFoCEdAl9K3Zbpu/HV9lChoBkdAcKUTtLL6lGgHTUUBaAhHQJfSv/95yEN1fZQoaAZHQHD1u58Sf19oB01cAWgIR0CX0tE12q1gdX2UKGgGR0BxD74AS39aaAdNNgFoCEdAl9MT2SMcZXV9lChoBkdAcVdzoUzsQmgHTSgBaAhHQJfTxLmITGp1fZQoaAZHQHBR+qJdjXpoB01IAWgIR0CX1tryDqW1dX2UKGgGR0A+eDWK/EflaAdNAQFoCEdAl9eBRVIZqHV9lChoBkdAcSTzshPj42gHTVwBaAhHQJfYOeyzHCJ1fZQoaAZHQHFkKD5CWu5oB01TAWgIR0CX2WzMibDudX2UKGgGR0BwLZJqZc9oaAdNrwFoCEdAl9sGGZeAu3V9lChoBkdAcLkp8neBQWgHTWwBaAhHQJfb/VtoBaN1fZQoaAZHQHGvT06HTJBoB00jAWgIR0CX3CgctGutdX2UKGgGR0BuS2s3hn8LaAdNlgFoCEdAl92LpzLfUHV9lChoBkdAcFsWGATZhGgHTWgBaAhHQJfd1OJtSAJ1fZQoaAZHQHCRykO7QLNoB006AWgIR0CX3ehTOxB3dX2UKGgGR0BwqOcG1QZXaAdNawFoCEdAl94DDKoybnV9lChoBkdAcfAE7GNrCWgHTToBaAhHQJfeQxSHdoF1fZQoaAZHQHIZQzch1T1oB01NAWgIR0CX3mm2sq8UdX2UKGgGR0BxJc5R0lqraAdNMwFoCEdAl97fmcOLBXV9lChoBkdAbqMGdI5HVmgHTXIBaAhHQJffdqEeyRl1fZQoaAZHQHHDiFoL5RFoB012AWgIR0CX34SBshxHdX2UKGgGR0BvIIzP8hs7aAdNUgFoCEdAl+J09yLhrHV9lChoBkdAcUfXrMTviWgHTVUBaAhHQJfjIauOjqR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}