GeminiFan207 commited on
Commit
9c4abbe
Β·
verified Β·
1 Parent(s): 7806bf9

Update model.safetensors

Browse files
Files changed (1) hide show
  1. model.safetensors +60 -27
model.safetensors CHANGED
@@ -1,3 +1,11 @@
 
 
 
 
 
 
 
 
1
  import torch
2
  import torch.nn as nn
3
  import torch.nn.functional as F
@@ -30,7 +38,7 @@ class RotaryPositionEmbedding(nn.Module):
30
  return (x * cos + x_rot * sin).view_as(x)
31
 
32
  # ========================
33
- # βœ… Dynamic Multi-Query Attention with RoPE and Speculative Decoding
34
  # ========================
35
  class DynamicMultiQueryAttention(nn.Module):
36
  def __init__(self, hidden_size: int, num_heads: int, dropout: float = 0.05, max_position_embeddings: int = 65536):
@@ -159,14 +167,14 @@ class SmartbloomLayer(nn.Module):
159
  class SmartbloomTransformer(nn.Module):
160
  def __init__(
161
  self,
162
- vocab_size: int = 250000, # Larger than BaGuaLu
163
- hidden_size: int = 81920, # Ultra-wide
164
- num_layers: int = 98304, # Ultra-deep to beat BaGuaLu
165
- num_heads: int = 640, # More heads
166
- num_experts: int = 32768, # Double BaGuaLu's 90,000 experts
167
- top_k: int = 4, # Top-k routing
168
- intermediate_size: int = 327680,# Massive FFN
169
- max_position_embeddings: int = 65536 # Double BaGuaLu's context
170
  ):
171
  super(SmartbloomTransformer, self).__init__()
172
 
@@ -223,41 +231,66 @@ model = SmartbloomTransformer(
223
  )
224
 
225
  # ========================
226
- # βœ… Sharded Save Model Weights to Safetensors
227
  # ========================
228
  def save_smartbloom():
229
  os.makedirs("smartbloom_shards", exist_ok=True)
230
- # Save embeddings and output layer
 
 
 
231
  embed_state_dict = {
232
  "embedding.weight": model.embedding.weight,
233
- "pos_embedding.weight": model.pos_embedding.weight,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234
  "norm.weight": model.norm.weight,
235
  "norm.bias": model.norm.bias,
236
  "output_layer.weight": model.output_layer.weight,
237
  "output_layer.bias": model.output_layer.bias
238
  }
239
- save_model(embed_state_dict, "smartbloom_shards/embeddings.safetensors")
240
-
241
- # Save each layer separately
242
- for i, layer in enumerate(model.layers):
243
- layer_state_dict = {f"layer_{i}.{k}": v for k, v in layer.state_dict().items()}
244
- save_model(layer_state_dict, f"smartbloom_shards/layer_{i}.safetensors")
245
 
246
  # ========================
247
- # βœ… Sharded Load Model Weights from Safetensors
248
  # ========================
249
  def load_smartbloom():
250
- # Load embeddings and output layer
251
- embed_state_dict = load_model("smartbloom_shards/embeddings.safetensors")
 
 
 
252
  model.embedding.load_state_dict({"weight": embed_state_dict["embedding.weight"]})
253
  model.pos_embedding.load_state_dict({"weight": embed_state_dict["pos_embedding.weight"]})
254
- model.norm.load_state_dict({"weight": embed_state_dict["norm.weight"], "bias": embed_state_dict["norm.bias"]})
255
- model.output_layer.load_state_dict({"weight": embed_state_dict["output_layer.weight"], "bias": embed_state_dict["output_layer.bias"]})
256
 
257
- # Load each layer
258
- for i, layer in enumerate(model.layers):
259
- layer_state_dict = load_model(f"smartbloom_shards/layer_{i}.safetensors")
260
- layer.load_state_dict({k.split('.', 1)[1]: v for k, v in layer_state_dict.items()})
 
 
 
 
 
 
 
 
 
 
261
 
262
  # ========================
263
  # πŸš€ Example Usage
 
1
+ #!/usr/bin/env python3
2
+ # smartbloom_transformer.py - Smartbloom 1.1 Advanced Transformer Model
3
+ # A hypothetical, ultra-advanced transformer with ~674T parameters to surpass BaGuaLu's 174T
4
+ # Sharded into 974 files for practicality
5
+ # Incorporates hierarchical MoE, dynamic multi-query attention with RoPE, and optimization
6
+ # Created for maximal power and intelligence, inspired by xAI principles
7
+ # Current date: March 10, 2025
8
+
9
  import torch
10
  import torch.nn as nn
11
  import torch.nn.functional as F
 
38
  return (x * cos + x_rot * sin).view_as(x)
39
 
40
  # ========================
41
+ # βœ… Dynamic Multi-Query Attention with RoPE
42
  # ========================
43
  class DynamicMultiQueryAttention(nn.Module):
44
  def __init__(self, hidden_size: int, num_heads: int, dropout: float = 0.05, max_position_embeddings: int = 65536):
 
167
  class SmartbloomTransformer(nn.Module):
168
  def __init__(
169
  self,
170
+ vocab_size: int = 250000,
171
+ hidden_size: int = 81920,
172
+ num_layers: int = 98304,
173
+ num_heads: int = 640,
174
+ num_experts: int = 32768,
175
+ top_k: int = 4,
176
+ intermediate_size: int = 327680,
177
+ max_position_embeddings: int = 65536
178
  ):
179
  super(SmartbloomTransformer, self).__init__()
180
 
 
231
  )
232
 
233
  # ========================
234
+ # βœ… Sharded Save Model Weights to 974 Files
235
  # ========================
236
  def save_smartbloom():
237
  os.makedirs("smartbloom_shards", exist_ok=True)
238
+ total_shards = 974
239
+ layers_per_shard = 98304 // (total_shards - 2) # 972 shards for layers, 2 for embeddings/output
240
+
241
+ # Shard 0: Embeddings
242
  embed_state_dict = {
243
  "embedding.weight": model.embedding.weight,
244
+ "pos_embedding.weight": model.pos_embedding.weight
245
+ }
246
+ save_model(embed_state_dict, "smartbloom_shards/shard_000.safetensors")
247
+
248
+ # Shards 1 to 972: Layers
249
+ for shard_idx in range(total_shards - 2): # 972 shards
250
+ start_layer = shard_idx * layers_per_shard
251
+ end_layer = min((shard_idx + 1) * layers_per_shard, 98304)
252
+ shard_state_dict = {}
253
+ for i in range(start_layer, end_layer):
254
+ layer = model.layers[i]
255
+ for k, v in layer.state_dict().items():
256
+ shard_state_dict[f"layer_{i}.{k}"] = v
257
+ save_model(shard_state_dict, f"smartbloom_shards/shard_{shard_idx + 1:03d}.safetensors")
258
+
259
+ # Shard 973: Output layer and final norm
260
+ output_state_dict = {
261
  "norm.weight": model.norm.weight,
262
  "norm.bias": model.norm.bias,
263
  "output_layer.weight": model.output_layer.weight,
264
  "output_layer.bias": model.output_layer.bias
265
  }
266
+ save_model(output_state_dict, f"smartbloom_shards/shard_{total_shards - 1:03d}.safetensors")
 
 
 
 
 
267
 
268
  # ========================
269
+ # βœ… Sharded Load Model Weights from 974 Files
270
  # ========================
271
  def load_smartbloom():
272
+ total_shards = 974
273
+ layers_per_shard = 98304 // (total_shards - 2)
274
+
275
+ # Load Shard 0: Embeddings
276
+ embed_state_dict = load_model("smartbloom_shards/shard_000.safetensors")
277
  model.embedding.load_state_dict({"weight": embed_state_dict["embedding.weight"]})
278
  model.pos_embedding.load_state_dict({"weight": embed_state_dict["pos_embedding.weight"]})
 
 
279
 
280
+ # Load Shards 1 to 972: Layers
281
+ for shard_idx in range(total_shards - 2):
282
+ start_layer = shard_idx * layers_per_shard
283
+ end_layer = min((shard_idx + 1) * layers_per_shard, 98304)
284
+ shard_state_dict = load_model(f"smartbloom_shards/shard_{shard_idx + 1:03d}.safetensors")
285
+ for i in range(start_layer, end_layer):
286
+ layer = model.layers[i]
287
+ layer_state_dict = {k.split('.', 1)[1]: v for k, v in shard_state_dict.items() if k.startswith(f"layer_{i}.")}
288
+ layer.load_state_dict(layer_state_dict)
289
+
290
+ # Load Shard 973: Output layer and norm
291
+ output_state_dict = load_model(f"smartbloom_shards/shard_{total_shards - 1:03d}.safetensors")
292
+ model.norm.load_state_dict({"weight": output_state_dict["norm.weight"], "bias": output_state_dict["norm.bias"]})
293
+ model.output_layer.load_state_dict({"weight": output_state_dict["output_layer.weight"], "bias": output_state_dict["output_layer.bias"]})
294
 
295
  # ========================
296
  # πŸš€ Example Usage