Update model.safetensors
Browse files- model.safetensors +60 -27
model.safetensors
CHANGED
@@ -1,3 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
import torch.nn.functional as F
|
@@ -30,7 +38,7 @@ class RotaryPositionEmbedding(nn.Module):
|
|
30 |
return (x * cos + x_rot * sin).view_as(x)
|
31 |
|
32 |
# ========================
|
33 |
-
# β
Dynamic Multi-Query Attention with RoPE
|
34 |
# ========================
|
35 |
class DynamicMultiQueryAttention(nn.Module):
|
36 |
def __init__(self, hidden_size: int, num_heads: int, dropout: float = 0.05, max_position_embeddings: int = 65536):
|
@@ -159,14 +167,14 @@ class SmartbloomLayer(nn.Module):
|
|
159 |
class SmartbloomTransformer(nn.Module):
|
160 |
def __init__(
|
161 |
self,
|
162 |
-
vocab_size: int = 250000,
|
163 |
-
hidden_size: int = 81920,
|
164 |
-
num_layers: int = 98304,
|
165 |
-
num_heads: int = 640,
|
166 |
-
num_experts: int = 32768,
|
167 |
-
top_k: int = 4,
|
168 |
-
intermediate_size: int = 327680
|
169 |
-
max_position_embeddings: int = 65536
|
170 |
):
|
171 |
super(SmartbloomTransformer, self).__init__()
|
172 |
|
@@ -223,41 +231,66 @@ model = SmartbloomTransformer(
|
|
223 |
)
|
224 |
|
225 |
# ========================
|
226 |
-
# β
Sharded Save Model Weights to
|
227 |
# ========================
|
228 |
def save_smartbloom():
|
229 |
os.makedirs("smartbloom_shards", exist_ok=True)
|
230 |
-
|
|
|
|
|
|
|
231 |
embed_state_dict = {
|
232 |
"embedding.weight": model.embedding.weight,
|
233 |
-
"pos_embedding.weight": model.pos_embedding.weight
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
"norm.weight": model.norm.weight,
|
235 |
"norm.bias": model.norm.bias,
|
236 |
"output_layer.weight": model.output_layer.weight,
|
237 |
"output_layer.bias": model.output_layer.bias
|
238 |
}
|
239 |
-
save_model(
|
240 |
-
|
241 |
-
# Save each layer separately
|
242 |
-
for i, layer in enumerate(model.layers):
|
243 |
-
layer_state_dict = {f"layer_{i}.{k}": v for k, v in layer.state_dict().items()}
|
244 |
-
save_model(layer_state_dict, f"smartbloom_shards/layer_{i}.safetensors")
|
245 |
|
246 |
# ========================
|
247 |
-
# β
Sharded Load Model Weights from
|
248 |
# ========================
|
249 |
def load_smartbloom():
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
252 |
model.embedding.load_state_dict({"weight": embed_state_dict["embedding.weight"]})
|
253 |
model.pos_embedding.load_state_dict({"weight": embed_state_dict["pos_embedding.weight"]})
|
254 |
-
model.norm.load_state_dict({"weight": embed_state_dict["norm.weight"], "bias": embed_state_dict["norm.bias"]})
|
255 |
-
model.output_layer.load_state_dict({"weight": embed_state_dict["output_layer.weight"], "bias": embed_state_dict["output_layer.bias"]})
|
256 |
|
257 |
-
# Load
|
258 |
-
for
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
# ========================
|
263 |
# π Example Usage
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# smartbloom_transformer.py - Smartbloom 1.1 Advanced Transformer Model
|
3 |
+
# A hypothetical, ultra-advanced transformer with ~674T parameters to surpass BaGuaLu's 174T
|
4 |
+
# Sharded into 974 files for practicality
|
5 |
+
# Incorporates hierarchical MoE, dynamic multi-query attention with RoPE, and optimization
|
6 |
+
# Created for maximal power and intelligence, inspired by xAI principles
|
7 |
+
# Current date: March 10, 2025
|
8 |
+
|
9 |
import torch
|
10 |
import torch.nn as nn
|
11 |
import torch.nn.functional as F
|
|
|
38 |
return (x * cos + x_rot * sin).view_as(x)
|
39 |
|
40 |
# ========================
|
41 |
+
# β
Dynamic Multi-Query Attention with RoPE
|
42 |
# ========================
|
43 |
class DynamicMultiQueryAttention(nn.Module):
|
44 |
def __init__(self, hidden_size: int, num_heads: int, dropout: float = 0.05, max_position_embeddings: int = 65536):
|
|
|
167 |
class SmartbloomTransformer(nn.Module):
|
168 |
def __init__(
|
169 |
self,
|
170 |
+
vocab_size: int = 250000,
|
171 |
+
hidden_size: int = 81920,
|
172 |
+
num_layers: int = 98304,
|
173 |
+
num_heads: int = 640,
|
174 |
+
num_experts: int = 32768,
|
175 |
+
top_k: int = 4,
|
176 |
+
intermediate_size: int = 327680,
|
177 |
+
max_position_embeddings: int = 65536
|
178 |
):
|
179 |
super(SmartbloomTransformer, self).__init__()
|
180 |
|
|
|
231 |
)
|
232 |
|
233 |
# ========================
|
234 |
+
# β
Sharded Save Model Weights to 974 Files
|
235 |
# ========================
|
236 |
def save_smartbloom():
|
237 |
os.makedirs("smartbloom_shards", exist_ok=True)
|
238 |
+
total_shards = 974
|
239 |
+
layers_per_shard = 98304 // (total_shards - 2) # 972 shards for layers, 2 for embeddings/output
|
240 |
+
|
241 |
+
# Shard 0: Embeddings
|
242 |
embed_state_dict = {
|
243 |
"embedding.weight": model.embedding.weight,
|
244 |
+
"pos_embedding.weight": model.pos_embedding.weight
|
245 |
+
}
|
246 |
+
save_model(embed_state_dict, "smartbloom_shards/shard_000.safetensors")
|
247 |
+
|
248 |
+
# Shards 1 to 972: Layers
|
249 |
+
for shard_idx in range(total_shards - 2): # 972 shards
|
250 |
+
start_layer = shard_idx * layers_per_shard
|
251 |
+
end_layer = min((shard_idx + 1) * layers_per_shard, 98304)
|
252 |
+
shard_state_dict = {}
|
253 |
+
for i in range(start_layer, end_layer):
|
254 |
+
layer = model.layers[i]
|
255 |
+
for k, v in layer.state_dict().items():
|
256 |
+
shard_state_dict[f"layer_{i}.{k}"] = v
|
257 |
+
save_model(shard_state_dict, f"smartbloom_shards/shard_{shard_idx + 1:03d}.safetensors")
|
258 |
+
|
259 |
+
# Shard 973: Output layer and final norm
|
260 |
+
output_state_dict = {
|
261 |
"norm.weight": model.norm.weight,
|
262 |
"norm.bias": model.norm.bias,
|
263 |
"output_layer.weight": model.output_layer.weight,
|
264 |
"output_layer.bias": model.output_layer.bias
|
265 |
}
|
266 |
+
save_model(output_state_dict, f"smartbloom_shards/shard_{total_shards - 1:03d}.safetensors")
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
# ========================
|
269 |
+
# β
Sharded Load Model Weights from 974 Files
|
270 |
# ========================
|
271 |
def load_smartbloom():
|
272 |
+
total_shards = 974
|
273 |
+
layers_per_shard = 98304 // (total_shards - 2)
|
274 |
+
|
275 |
+
# Load Shard 0: Embeddings
|
276 |
+
embed_state_dict = load_model("smartbloom_shards/shard_000.safetensors")
|
277 |
model.embedding.load_state_dict({"weight": embed_state_dict["embedding.weight"]})
|
278 |
model.pos_embedding.load_state_dict({"weight": embed_state_dict["pos_embedding.weight"]})
|
|
|
|
|
279 |
|
280 |
+
# Load Shards 1 to 972: Layers
|
281 |
+
for shard_idx in range(total_shards - 2):
|
282 |
+
start_layer = shard_idx * layers_per_shard
|
283 |
+
end_layer = min((shard_idx + 1) * layers_per_shard, 98304)
|
284 |
+
shard_state_dict = load_model(f"smartbloom_shards/shard_{shard_idx + 1:03d}.safetensors")
|
285 |
+
for i in range(start_layer, end_layer):
|
286 |
+
layer = model.layers[i]
|
287 |
+
layer_state_dict = {k.split('.', 1)[1]: v for k, v in shard_state_dict.items() if k.startswith(f"layer_{i}.")}
|
288 |
+
layer.load_state_dict(layer_state_dict)
|
289 |
+
|
290 |
+
# Load Shard 973: Output layer and norm
|
291 |
+
output_state_dict = load_model(f"smartbloom_shards/shard_{total_shards - 1:03d}.safetensors")
|
292 |
+
model.norm.load_state_dict({"weight": output_state_dict["norm.weight"], "bias": output_state_dict["norm.bias"]})
|
293 |
+
model.output_layer.load_state_dict({"weight": output_state_dict["output_layer.weight"], "bias": output_state_dict["output_layer.bias"]})
|
294 |
|
295 |
# ========================
|
296 |
# π Example Usage
|