File size: 18,561 Bytes
433de9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import json
import logging
import os
import subprocess
import time

import datasets
import gradio as gr
import huggingface_hub
from transformers.pipelines import TextClassificationPipeline

from io_utils import (
    convert_column_mapping_to_json,
    read_inference_type,
    read_scanners,
    write_inference_type,
    write_scanners,
)
from text_classification import (
    check_column_mapping_keys_validity,
    text_classification_fix_column_mapping,
)
from wordings import CONFIRM_MAPPING_DETAILS_FAIL_MD, CONFIRM_MAPPING_DETAILS_MD

HF_REPO_ID = "HF_REPO_ID"
HF_SPACE_ID = "SPACE_ID"
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"


def check_model(model_id):
    try:
        task = huggingface_hub.model_info(model_id).pipeline_tag
    except Exception:
        return None, None

    try:
        from transformers import pipeline

        ppl = pipeline(task=task, model=model_id)

        return model_id, ppl
    except Exception as e:
        return model_id, e


def check_dataset(dataset_id, dataset_config="default", dataset_split="test"):
    try:
        configs = datasets.get_dataset_config_names(dataset_id)
    except Exception:
        # Dataset may not exist
        return None, dataset_config, dataset_split

    if dataset_config not in configs:
        # Need to choose dataset subset (config)
        return dataset_id, configs, dataset_split

    ds = datasets.load_dataset(dataset_id, dataset_config)

    if isinstance(ds, datasets.DatasetDict):
        # Need to choose dataset split
        if dataset_split not in ds.keys():
            return dataset_id, None, list(ds.keys())
    elif not isinstance(ds, datasets.Dataset):
        # Unknown type
        return dataset_id, None, None
    return dataset_id, dataset_config, dataset_split


def try_validate(
    m_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping="{}"
):
    # Validate model
    if m_id is None:
        gr.Warning(
            "Model is not accessible. Please set your HF_TOKEN if it is a private model."
        )
        return (
            gr.update(interactive=False),  # Submit button
            gr.update(visible=True),  # Loading row
            gr.update(visible=False),  # Preview row
            gr.update(visible=False),  # Model prediction input
            gr.update(visible=False),  # Model prediction preview
            gr.update(visible=False),  # Label mapping preview
            gr.update(visible=False),  # feature mapping preview
        )
    if isinstance(ppl, Exception):
        gr.Warning(f'Failed to load model": {ppl}')
        return (
            gr.update(interactive=False),  # Submit button
            gr.update(visible=True),  # Loading row
            gr.update(visible=False),  # Preview row
            gr.update(visible=False),  # Model prediction input
            gr.update(visible=False),  # Model prediction preview
            gr.update(visible=False),  # Label mapping preview
            gr.update(visible=False),  # feature mapping preview
        )

    # Validate dataset
    d_id, config, split = check_dataset(
        dataset_id=dataset_id,
        dataset_config=dataset_config,
        dataset_split=dataset_split,
    )

    dataset_ok = False
    if d_id is None:
        gr.Warning(
            f'Dataset "{dataset_id}" is not accessible. Please set your HF_TOKEN if it is a private dataset.'
        )
    elif isinstance(config, list):
        gr.Warning(
            f'Dataset "{dataset_id}" does not have "{dataset_config}" config. Please choose a valid config.'
        )
        config = gr.update(choices=config, value=config[0])
    elif isinstance(split, list):
        gr.Warning(
            f'Dataset "{dataset_id}" does not have "{dataset_split}" split. Please choose a valid split.'
        )
        split = gr.update(choices=split, value=split[0])
    else:
        dataset_ok = True

    if not dataset_ok:
        return (
            gr.update(interactive=False),  # Submit button
            gr.update(visible=True),  # Loading row
            gr.update(visible=False),  # Preview row
            gr.update(visible=False),  # Model prediction input
            gr.update(visible=False),  # Model prediction preview
            gr.update(visible=False),  # Label mapping preview
            gr.update(visible=False),  # feature mapping preview
        )

    # TODO: Validate column mapping by running once
    prediction_result = None
    id2label_df = None
    if isinstance(ppl, TextClassificationPipeline):
        try:
            column_mapping = json.loads(column_mapping)
        except Exception:
            column_mapping = {}

        (
            column_mapping,
            prediction_input,
            prediction_result,
            id2label_df,
            feature_df,
        ) = text_classification_fix_column_mapping(
            column_mapping, ppl, d_id, config, split
        )

        column_mapping = json.dumps(column_mapping, indent=2)

    if prediction_result is None and id2label_df is not None:
        gr.Warning(
            'The model failed to predict with the first row in the dataset. Please provide feature mappings in "Advance" settings.'
        )
        return (
            gr.update(interactive=False),  # Submit button
            gr.update(visible=False),  # Loading row
            gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True),  # Preview row
            gr.update(
                value=f"**Sample Input**: {prediction_input}", visible=True
            ),  # Model prediction input
            gr.update(visible=False),  # Model prediction preview
            gr.update(
                value=id2label_df, visible=True, interactive=True
            ),  # Label mapping preview
            gr.update(
                value=feature_df, visible=True, interactive=True
            ),  # feature mapping preview
        )
    elif id2label_df is None:
        gr.Warning(
            'The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.'
        )
        return (
            gr.update(interactive=False),  # Submit button
            gr.update(visible=False),  # Loading row
            gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True),  # Preview row
            gr.update(
                value=f"**Sample Input**: {prediction_input}", visible=True
            ),  # Model prediction input
            gr.update(
                value=prediction_result, visible=True
            ),  # Model prediction preview
            gr.update(visible=True, interactive=True),  # Label mapping preview
            gr.update(visible=True, interactive=True),  # feature mapping preview
        )

    gr.Info(
        "Model and dataset validations passed. Your can submit the evaluation task."
    )

    return (
        gr.update(interactive=True),  # Submit button
        gr.update(visible=False),  # Loading row
        gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True),  # Preview row
        gr.update(
            value=f"**Sample Input**: {prediction_input}", visible=True
        ),  # Model prediction input
        gr.update(value=prediction_result, visible=True),  # Model prediction preview
        gr.update(
            value=id2label_df, visible=True, interactive=True
        ),  # Label mapping preview
        gr.update(
            value=feature_df, visible=True, interactive=True
        ),  # feature mapping preview
    )


def try_submit(
    m_id,
    d_id,
    config,
    split,
    id2label_mapping_dataframe,
    feature_mapping_dataframe,
    local,
):
    label_mapping = {}
    for i, label in id2label_mapping_dataframe["Model Prediction Labels"].items():
        label_mapping.update({str(i): label})

    feature_mapping = {}
    for i, feature in feature_mapping_dataframe["Dataset Features"].items():
        feature_mapping.update(
            {feature_mapping_dataframe["Model Input Features"][i]: feature}
        )

    # TODO: Set column mapping for some dataset such as `amazon_polarity`

    if local:
        command = [
            "giskard_scanner",
            "--loader",
            "huggingface",
            "--model",
            m_id,
            "--dataset",
            d_id,
            "--dataset_config",
            config,
            "--dataset_split",
            split,
            "--hf_token",
            os.environ.get(HF_WRITE_TOKEN),
            "--discussion_repo",
            os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
            "--output_format",
            "markdown",
            "--output_portal",
            "huggingface",
            "--feature_mapping",
            json.dumps(feature_mapping),
            "--label_mapping",
            json.dumps(label_mapping),
            "--scan_config",
            "../config.yaml",
        ]

        eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
        start = time.time()
        logging.info(f"Start local evaluation on {eval_str}")

        evaluator = subprocess.Popen(
            command,
            stderr=subprocess.STDOUT,
        )
        result = evaluator.wait()

        logging.info(
            f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s"
        )

        gr.Info(
            f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s"
        )
    else:
        gr.Info("TODO: Submit task to an endpoint")

    return gr.update(interactive=True)  # Submit button


def get_demo():
    # gr.themes.Soft(
    #     primary_hue="green",
    # )

    def check_dataset_and_get_config(dataset_id):
        try:
            configs = datasets.get_dataset_config_names(dataset_id)
            return gr.Dropdown(configs, value=configs[0], visible=True)
        except Exception:
            # Dataset may not exist
            pass

    def check_dataset_and_get_split(dataset_config, dataset_id):
        try:
            splits = list(datasets.load_dataset(dataset_id, dataset_config).keys())
            return gr.Dropdown(splits, value=splits[0], visible=True)
        except Exception as e:
            # Dataset may not exist
            gr.Warning(
                f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}"
            )

    def clear_column_mapping_tables():
        return [
            gr.update(CONFIRM_MAPPING_DETAILS_FAIL_MD, visible=True),
            gr.update(value=[], visible=False, interactive=True),
            gr.update(value=[], visible=False, interactive=True),
        ]

    def gate_validate_btn(
        model_id,
        dataset_id,
        dataset_config,
        dataset_split,
        id2label_mapping_dataframe=None,
        feature_mapping_dataframe=None,
    ):
        column_mapping = "{}"
        _, ppl = check_model(model_id=model_id)

        if id2label_mapping_dataframe is not None:
            labels = convert_column_mapping_to_json(
                id2label_mapping_dataframe.value, label="data"
            )
            features = convert_column_mapping_to_json(
                feature_mapping_dataframe.value, label="text"
            )
            column_mapping = json.dumps({**labels, **features}, indent=2)

        if check_column_mapping_keys_validity(column_mapping, ppl) is False:
            gr.Warning("Label mapping table has invalid contents. Please check again.")
            return (
                gr.update(interactive=False),
                gr.update(CONFIRM_MAPPING_DETAILS_FAIL_MD, visible=True),
                gr.update(),
                gr.update(),
                gr.update(),
                gr.update(),
                gr.update(),
            )
        else:
            if model_id and dataset_id and dataset_config and dataset_split:
                return try_validate(
                    model_id,
                    ppl,
                    dataset_id,
                    dataset_config,
                    dataset_split,
                    column_mapping,
                )
            else:
                return (
                    gr.update(interactive=False),
                    gr.update(visible=True),
                    gr.update(visible=False),
                    gr.update(visible=False),
                    gr.update(visible=False),
                    gr.update(visible=False),
                    gr.update(visible=False),
                )

    with gr.Row():
        gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
    with gr.Row():
        run_local = gr.Checkbox(value=True, label="Run in this Space")
        use_inference = read_inference_type("./config.yaml") == "hf_inference_api"
        run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")

    with gr.Row():
        selected = read_scanners("./config.yaml")
        scan_config = selected + ["data_leakage"]
        scanners = gr.CheckboxGroup(
            choices=scan_config, value=selected, label="Scan Settings", visible=True
        )

    with gr.Row():
        model_id_input = gr.Textbox(
            label="Hugging Face model id",
            placeholder="cardiffnlp/twitter-roberta-base-sentiment-latest",
        )

        dataset_id_input = gr.Textbox(
            label="Hugging Face Dataset id",
            placeholder="tweet_eval",
        )
    with gr.Row():
        dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False)
        dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False)

    with gr.Row(visible=True) as loading_row:
        gr.Markdown(
            """
                    <p style="text-align: center;">
                    🚀🐢Please validate your model and dataset first...
                    </p>
                    """
        )

    with gr.Row(visible=False) as preview_row:
        gr.Markdown(
            """
            <h1 style="text-align: center;">
            Confirm Pre-processing Details
            </h1>
            Base on your model and dataset, we inferred this label mapping and feature mapping. <b>If the mapping is incorrect, please modify it in the table below.</b>
            """
        )

    with gr.Row():
        id2label_mapping_dataframe = gr.DataFrame(
            label="Preview of label mapping", interactive=True, visible=False
        )
        feature_mapping_dataframe = gr.DataFrame(
            label="Preview of feature mapping", interactive=True, visible=False
        )
    with gr.Row():
        example_input = gr.Markdown("Sample Input: ", visible=False)

    with gr.Row():
        example_labels = gr.Label(label="Model Prediction Sample", visible=False)

    run_btn = gr.Button(
        "Get Evaluation Result",
        variant="primary",
        interactive=False,
        size="lg",
    )

    model_id_input.blur(
        clear_column_mapping_tables,
        outputs=[id2label_mapping_dataframe, feature_mapping_dataframe],
    )

    dataset_id_input.blur(
        check_dataset_and_get_config, dataset_id_input, dataset_config_input
    )
    dataset_id_input.submit(
        check_dataset_and_get_config, dataset_id_input, dataset_config_input
    )

    dataset_config_input.change(
        check_dataset_and_get_split,
        inputs=[dataset_config_input, dataset_id_input],
        outputs=[dataset_split_input],
    )

    dataset_id_input.blur(
        clear_column_mapping_tables,
        outputs=[id2label_mapping_dataframe, feature_mapping_dataframe],
    )
    # model_id_input.blur(gate_validate_btn,
    #                         inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
    #                         outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
    # dataset_id_input.blur(gate_validate_btn,
    #                         inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
    # outputs=[run_btn, loading_row, preview_row, example_input,  example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
    dataset_config_input.change(
        gate_validate_btn,
        inputs=[
            model_id_input,
            dataset_id_input,
            dataset_config_input,
            dataset_split_input,
        ],
        outputs=[
            run_btn,
            loading_row,
            preview_row,
            example_input,
            example_labels,
            id2label_mapping_dataframe,
            feature_mapping_dataframe,
        ],
    )
    dataset_split_input.change(
        gate_validate_btn,
        inputs=[
            model_id_input,
            dataset_id_input,
            dataset_config_input,
            dataset_split_input,
        ],
        outputs=[
            run_btn,
            loading_row,
            preview_row,
            example_input,
            example_labels,
            id2label_mapping_dataframe,
            feature_mapping_dataframe,
        ],
    )
    id2label_mapping_dataframe.input(
        gate_validate_btn,
        inputs=[
            model_id_input,
            dataset_id_input,
            dataset_config_input,
            dataset_split_input,
            id2label_mapping_dataframe,
            feature_mapping_dataframe,
        ],
        outputs=[
            run_btn,
            loading_row,
            preview_row,
            example_input,
            example_labels,
            id2label_mapping_dataframe,
            feature_mapping_dataframe,
        ],
    )
    feature_mapping_dataframe.input(
        gate_validate_btn,
        inputs=[
            model_id_input,
            dataset_id_input,
            dataset_config_input,
            dataset_split_input,
            id2label_mapping_dataframe,
            feature_mapping_dataframe,
        ],
        outputs=[
            run_btn,
            loading_row,
            preview_row,
            example_input,
            example_labels,
            id2label_mapping_dataframe,
            feature_mapping_dataframe,
        ],
    )
    scanners.change(write_scanners, inputs=scanners)
    run_inference.change(write_inference_type, inputs=[run_inference])

    run_btn.click(
        try_submit,
        inputs=[
            model_id_input,
            dataset_id_input,
            dataset_config_input,
            dataset_split_input,
            id2label_mapping_dataframe,
            feature_mapping_dataframe,
            run_local,
        ],
        outputs=[
            run_btn,
        ],
    )