File size: 18,561 Bytes
433de9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
import json
import logging
import os
import subprocess
import time
import datasets
import gradio as gr
import huggingface_hub
from transformers.pipelines import TextClassificationPipeline
from io_utils import (
convert_column_mapping_to_json,
read_inference_type,
read_scanners,
write_inference_type,
write_scanners,
)
from text_classification import (
check_column_mapping_keys_validity,
text_classification_fix_column_mapping,
)
from wordings import CONFIRM_MAPPING_DETAILS_FAIL_MD, CONFIRM_MAPPING_DETAILS_MD
HF_REPO_ID = "HF_REPO_ID"
HF_SPACE_ID = "SPACE_ID"
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
def check_model(model_id):
try:
task = huggingface_hub.model_info(model_id).pipeline_tag
except Exception:
return None, None
try:
from transformers import pipeline
ppl = pipeline(task=task, model=model_id)
return model_id, ppl
except Exception as e:
return model_id, e
def check_dataset(dataset_id, dataset_config="default", dataset_split="test"):
try:
configs = datasets.get_dataset_config_names(dataset_id)
except Exception:
# Dataset may not exist
return None, dataset_config, dataset_split
if dataset_config not in configs:
# Need to choose dataset subset (config)
return dataset_id, configs, dataset_split
ds = datasets.load_dataset(dataset_id, dataset_config)
if isinstance(ds, datasets.DatasetDict):
# Need to choose dataset split
if dataset_split not in ds.keys():
return dataset_id, None, list(ds.keys())
elif not isinstance(ds, datasets.Dataset):
# Unknown type
return dataset_id, None, None
return dataset_id, dataset_config, dataset_split
def try_validate(
m_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping="{}"
):
# Validate model
if m_id is None:
gr.Warning(
"Model is not accessible. Please set your HF_TOKEN if it is a private model."
)
return (
gr.update(interactive=False), # Submit button
gr.update(visible=True), # Loading row
gr.update(visible=False), # Preview row
gr.update(visible=False), # Model prediction input
gr.update(visible=False), # Model prediction preview
gr.update(visible=False), # Label mapping preview
gr.update(visible=False), # feature mapping preview
)
if isinstance(ppl, Exception):
gr.Warning(f'Failed to load model": {ppl}')
return (
gr.update(interactive=False), # Submit button
gr.update(visible=True), # Loading row
gr.update(visible=False), # Preview row
gr.update(visible=False), # Model prediction input
gr.update(visible=False), # Model prediction preview
gr.update(visible=False), # Label mapping preview
gr.update(visible=False), # feature mapping preview
)
# Validate dataset
d_id, config, split = check_dataset(
dataset_id=dataset_id,
dataset_config=dataset_config,
dataset_split=dataset_split,
)
dataset_ok = False
if d_id is None:
gr.Warning(
f'Dataset "{dataset_id}" is not accessible. Please set your HF_TOKEN if it is a private dataset.'
)
elif isinstance(config, list):
gr.Warning(
f'Dataset "{dataset_id}" does not have "{dataset_config}" config. Please choose a valid config.'
)
config = gr.update(choices=config, value=config[0])
elif isinstance(split, list):
gr.Warning(
f'Dataset "{dataset_id}" does not have "{dataset_split}" split. Please choose a valid split.'
)
split = gr.update(choices=split, value=split[0])
else:
dataset_ok = True
if not dataset_ok:
return (
gr.update(interactive=False), # Submit button
gr.update(visible=True), # Loading row
gr.update(visible=False), # Preview row
gr.update(visible=False), # Model prediction input
gr.update(visible=False), # Model prediction preview
gr.update(visible=False), # Label mapping preview
gr.update(visible=False), # feature mapping preview
)
# TODO: Validate column mapping by running once
prediction_result = None
id2label_df = None
if isinstance(ppl, TextClassificationPipeline):
try:
column_mapping = json.loads(column_mapping)
except Exception:
column_mapping = {}
(
column_mapping,
prediction_input,
prediction_result,
id2label_df,
feature_df,
) = text_classification_fix_column_mapping(
column_mapping, ppl, d_id, config, split
)
column_mapping = json.dumps(column_mapping, indent=2)
if prediction_result is None and id2label_df is not None:
gr.Warning(
'The model failed to predict with the first row in the dataset. Please provide feature mappings in "Advance" settings.'
)
return (
gr.update(interactive=False), # Submit button
gr.update(visible=False), # Loading row
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True), # Preview row
gr.update(
value=f"**Sample Input**: {prediction_input}", visible=True
), # Model prediction input
gr.update(visible=False), # Model prediction preview
gr.update(
value=id2label_df, visible=True, interactive=True
), # Label mapping preview
gr.update(
value=feature_df, visible=True, interactive=True
), # feature mapping preview
)
elif id2label_df is None:
gr.Warning(
'The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.'
)
return (
gr.update(interactive=False), # Submit button
gr.update(visible=False), # Loading row
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True), # Preview row
gr.update(
value=f"**Sample Input**: {prediction_input}", visible=True
), # Model prediction input
gr.update(
value=prediction_result, visible=True
), # Model prediction preview
gr.update(visible=True, interactive=True), # Label mapping preview
gr.update(visible=True, interactive=True), # feature mapping preview
)
gr.Info(
"Model and dataset validations passed. Your can submit the evaluation task."
)
return (
gr.update(interactive=True), # Submit button
gr.update(visible=False), # Loading row
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True), # Preview row
gr.update(
value=f"**Sample Input**: {prediction_input}", visible=True
), # Model prediction input
gr.update(value=prediction_result, visible=True), # Model prediction preview
gr.update(
value=id2label_df, visible=True, interactive=True
), # Label mapping preview
gr.update(
value=feature_df, visible=True, interactive=True
), # feature mapping preview
)
def try_submit(
m_id,
d_id,
config,
split,
id2label_mapping_dataframe,
feature_mapping_dataframe,
local,
):
label_mapping = {}
for i, label in id2label_mapping_dataframe["Model Prediction Labels"].items():
label_mapping.update({str(i): label})
feature_mapping = {}
for i, feature in feature_mapping_dataframe["Dataset Features"].items():
feature_mapping.update(
{feature_mapping_dataframe["Model Input Features"][i]: feature}
)
# TODO: Set column mapping for some dataset such as `amazon_polarity`
if local:
command = [
"giskard_scanner",
"--loader",
"huggingface",
"--model",
m_id,
"--dataset",
d_id,
"--dataset_config",
config,
"--dataset_split",
split,
"--hf_token",
os.environ.get(HF_WRITE_TOKEN),
"--discussion_repo",
os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
"--output_format",
"markdown",
"--output_portal",
"huggingface",
"--feature_mapping",
json.dumps(feature_mapping),
"--label_mapping",
json.dumps(label_mapping),
"--scan_config",
"../config.yaml",
]
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
start = time.time()
logging.info(f"Start local evaluation on {eval_str}")
evaluator = subprocess.Popen(
command,
stderr=subprocess.STDOUT,
)
result = evaluator.wait()
logging.info(
f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s"
)
gr.Info(
f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s"
)
else:
gr.Info("TODO: Submit task to an endpoint")
return gr.update(interactive=True) # Submit button
def get_demo():
# gr.themes.Soft(
# primary_hue="green",
# )
def check_dataset_and_get_config(dataset_id):
try:
configs = datasets.get_dataset_config_names(dataset_id)
return gr.Dropdown(configs, value=configs[0], visible=True)
except Exception:
# Dataset may not exist
pass
def check_dataset_and_get_split(dataset_config, dataset_id):
try:
splits = list(datasets.load_dataset(dataset_id, dataset_config).keys())
return gr.Dropdown(splits, value=splits[0], visible=True)
except Exception as e:
# Dataset may not exist
gr.Warning(
f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}"
)
def clear_column_mapping_tables():
return [
gr.update(CONFIRM_MAPPING_DETAILS_FAIL_MD, visible=True),
gr.update(value=[], visible=False, interactive=True),
gr.update(value=[], visible=False, interactive=True),
]
def gate_validate_btn(
model_id,
dataset_id,
dataset_config,
dataset_split,
id2label_mapping_dataframe=None,
feature_mapping_dataframe=None,
):
column_mapping = "{}"
_, ppl = check_model(model_id=model_id)
if id2label_mapping_dataframe is not None:
labels = convert_column_mapping_to_json(
id2label_mapping_dataframe.value, label="data"
)
features = convert_column_mapping_to_json(
feature_mapping_dataframe.value, label="text"
)
column_mapping = json.dumps({**labels, **features}, indent=2)
if check_column_mapping_keys_validity(column_mapping, ppl) is False:
gr.Warning("Label mapping table has invalid contents. Please check again.")
return (
gr.update(interactive=False),
gr.update(CONFIRM_MAPPING_DETAILS_FAIL_MD, visible=True),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
)
else:
if model_id and dataset_id and dataset_config and dataset_split:
return try_validate(
model_id,
ppl,
dataset_id,
dataset_config,
dataset_split,
column_mapping,
)
else:
return (
gr.update(interactive=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
with gr.Row():
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
with gr.Row():
run_local = gr.Checkbox(value=True, label="Run in this Space")
use_inference = read_inference_type("./config.yaml") == "hf_inference_api"
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
with gr.Row():
selected = read_scanners("./config.yaml")
scan_config = selected + ["data_leakage"]
scanners = gr.CheckboxGroup(
choices=scan_config, value=selected, label="Scan Settings", visible=True
)
with gr.Row():
model_id_input = gr.Textbox(
label="Hugging Face model id",
placeholder="cardiffnlp/twitter-roberta-base-sentiment-latest",
)
dataset_id_input = gr.Textbox(
label="Hugging Face Dataset id",
placeholder="tweet_eval",
)
with gr.Row():
dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False)
dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False)
with gr.Row(visible=True) as loading_row:
gr.Markdown(
"""
<p style="text-align: center;">
🚀🐢Please validate your model and dataset first...
</p>
"""
)
with gr.Row(visible=False) as preview_row:
gr.Markdown(
"""
<h1 style="text-align: center;">
Confirm Pre-processing Details
</h1>
Base on your model and dataset, we inferred this label mapping and feature mapping. <b>If the mapping is incorrect, please modify it in the table below.</b>
"""
)
with gr.Row():
id2label_mapping_dataframe = gr.DataFrame(
label="Preview of label mapping", interactive=True, visible=False
)
feature_mapping_dataframe = gr.DataFrame(
label="Preview of feature mapping", interactive=True, visible=False
)
with gr.Row():
example_input = gr.Markdown("Sample Input: ", visible=False)
with gr.Row():
example_labels = gr.Label(label="Model Prediction Sample", visible=False)
run_btn = gr.Button(
"Get Evaluation Result",
variant="primary",
interactive=False,
size="lg",
)
model_id_input.blur(
clear_column_mapping_tables,
outputs=[id2label_mapping_dataframe, feature_mapping_dataframe],
)
dataset_id_input.blur(
check_dataset_and_get_config, dataset_id_input, dataset_config_input
)
dataset_id_input.submit(
check_dataset_and_get_config, dataset_id_input, dataset_config_input
)
dataset_config_input.change(
check_dataset_and_get_split,
inputs=[dataset_config_input, dataset_id_input],
outputs=[dataset_split_input],
)
dataset_id_input.blur(
clear_column_mapping_tables,
outputs=[id2label_mapping_dataframe, feature_mapping_dataframe],
)
# model_id_input.blur(gate_validate_btn,
# inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
# outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
# dataset_id_input.blur(gate_validate_btn,
# inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
# outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
dataset_config_input.change(
gate_validate_btn,
inputs=[
model_id_input,
dataset_id_input,
dataset_config_input,
dataset_split_input,
],
outputs=[
run_btn,
loading_row,
preview_row,
example_input,
example_labels,
id2label_mapping_dataframe,
feature_mapping_dataframe,
],
)
dataset_split_input.change(
gate_validate_btn,
inputs=[
model_id_input,
dataset_id_input,
dataset_config_input,
dataset_split_input,
],
outputs=[
run_btn,
loading_row,
preview_row,
example_input,
example_labels,
id2label_mapping_dataframe,
feature_mapping_dataframe,
],
)
id2label_mapping_dataframe.input(
gate_validate_btn,
inputs=[
model_id_input,
dataset_id_input,
dataset_config_input,
dataset_split_input,
id2label_mapping_dataframe,
feature_mapping_dataframe,
],
outputs=[
run_btn,
loading_row,
preview_row,
example_input,
example_labels,
id2label_mapping_dataframe,
feature_mapping_dataframe,
],
)
feature_mapping_dataframe.input(
gate_validate_btn,
inputs=[
model_id_input,
dataset_id_input,
dataset_config_input,
dataset_split_input,
id2label_mapping_dataframe,
feature_mapping_dataframe,
],
outputs=[
run_btn,
loading_row,
preview_row,
example_input,
example_labels,
id2label_mapping_dataframe,
feature_mapping_dataframe,
],
)
scanners.change(write_scanners, inputs=scanners)
run_inference.change(write_inference_type, inputs=[run_inference])
run_btn.click(
try_submit,
inputs=[
model_id_input,
dataset_id_input,
dataset_config_input,
dataset_split_input,
id2label_mapping_dataframe,
feature_mapping_dataframe,
run_local,
],
outputs=[
run_btn,
],
)
|