File size: 3,653 Bytes
433de9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os

import yaml

YAML_PATH = "./cicd/configs"
LOG_FILE = "temp_log"


class Dumper(yaml.Dumper):
    def increase_indent(self, flow=False, *args, **kwargs):
        return super().increase_indent(flow=flow, indentless=False)


def get_yaml_path(uid):
    if not os.path.exists(YAML_PATH):
        os.makedirs(YAML_PATH)
    if not os.path.exists(f"{YAML_PATH}/{uid}_config.yaml"):
        os.system(f"cp config.yaml {YAML_PATH}/{uid}_config.yaml")
    return f"{YAML_PATH}/{uid}_config.yaml"


# read scanners from yaml file
# return a list of scanners
def read_scanners(uid):
    scanners = []
    with open(get_yaml_path(uid), "r") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
        scanners = config.get("detectors", [])
    return scanners


# convert a list of scanners to yaml file
def write_scanners(scanners, uid):
    with open(get_yaml_path(uid), "r") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
        if config:
            config["detectors"] = scanners
    # save scanners to detectors in yaml
    with open(get_yaml_path(uid), "w") as f:
        yaml.dump(config, f, Dumper=Dumper)


# read model_type from yaml file
def read_inference_type(uid):
    inference_type = ""
    with open(get_yaml_path(uid), "r") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
        inference_type = config.get("inference_type", "")
    return inference_type


# write model_type to yaml file
def write_inference_type(use_inference, inference_token, uid):
    with open(get_yaml_path(uid), "r") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
        if use_inference:
            config["inference_type"] = "hf_inference_api"
            config["inference_token"] = inference_token
        else:
            config["inference_type"] = "hf_pipeline"
            # FIXME: A quick and temp fix for missing token
            config["inference_token"] = ""
    # save inference_type to inference_type in yaml
    with open(get_yaml_path(uid), "w") as f:
        yaml.dump(config, f, Dumper=Dumper)


# read column mapping from yaml file
def read_column_mapping(uid):
    column_mapping = {}
    with open(get_yaml_path(uid), "r") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
        if config:
            column_mapping = config.get("column_mapping", dict())
    return column_mapping


# write column mapping to yaml file
def write_column_mapping(mapping, uid):
    with open(get_yaml_path(uid), "r") as f:
        config = yaml.load(f, Loader=yaml.FullLoader)

    if config is None:
        return
    if mapping is None and "column_mapping" in config.keys():
        del config["column_mapping"]
    else:
        config["column_mapping"] = mapping
    with open(get_yaml_path(uid), "w") as f:
        # yaml Dumper will by default sort the keys
        yaml.dump(config, f, Dumper=Dumper, sort_keys=False)


# convert column mapping dataframe to json
def convert_column_mapping_to_json(df, label=""):
    column_mapping = {}
    column_mapping[label] = []
    for _, row in df.iterrows():
        column_mapping[label].append(row.tolist())
    return column_mapping


def get_log_file_with_uid(uid):
    try:
        print(f"Loading {uid}.log")
        with open(f"./tmp/{uid}.log", "a") as file:
            return file.read()
    except Exception:
        return "Log file does not exist"


def get_logs_file():
    try:
        with open(LOG_FILE, "r") as file:
            return file.read()
    except Exception:
        return "Log file does not exist"


def write_log_to_user_file(task_id, log):
    with open(f"./tmp/{task_id}.log", "a") as f:
        f.write(log)