File size: 3,653 Bytes
433de9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import os
import yaml
YAML_PATH = "./cicd/configs"
LOG_FILE = "temp_log"
class Dumper(yaml.Dumper):
def increase_indent(self, flow=False, *args, **kwargs):
return super().increase_indent(flow=flow, indentless=False)
def get_yaml_path(uid):
if not os.path.exists(YAML_PATH):
os.makedirs(YAML_PATH)
if not os.path.exists(f"{YAML_PATH}/{uid}_config.yaml"):
os.system(f"cp config.yaml {YAML_PATH}/{uid}_config.yaml")
return f"{YAML_PATH}/{uid}_config.yaml"
# read scanners from yaml file
# return a list of scanners
def read_scanners(uid):
scanners = []
with open(get_yaml_path(uid), "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
scanners = config.get("detectors", [])
return scanners
# convert a list of scanners to yaml file
def write_scanners(scanners, uid):
with open(get_yaml_path(uid), "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
if config:
config["detectors"] = scanners
# save scanners to detectors in yaml
with open(get_yaml_path(uid), "w") as f:
yaml.dump(config, f, Dumper=Dumper)
# read model_type from yaml file
def read_inference_type(uid):
inference_type = ""
with open(get_yaml_path(uid), "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
inference_type = config.get("inference_type", "")
return inference_type
# write model_type to yaml file
def write_inference_type(use_inference, inference_token, uid):
with open(get_yaml_path(uid), "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
if use_inference:
config["inference_type"] = "hf_inference_api"
config["inference_token"] = inference_token
else:
config["inference_type"] = "hf_pipeline"
# FIXME: A quick and temp fix for missing token
config["inference_token"] = ""
# save inference_type to inference_type in yaml
with open(get_yaml_path(uid), "w") as f:
yaml.dump(config, f, Dumper=Dumper)
# read column mapping from yaml file
def read_column_mapping(uid):
column_mapping = {}
with open(get_yaml_path(uid), "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
if config:
column_mapping = config.get("column_mapping", dict())
return column_mapping
# write column mapping to yaml file
def write_column_mapping(mapping, uid):
with open(get_yaml_path(uid), "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
if config is None:
return
if mapping is None and "column_mapping" in config.keys():
del config["column_mapping"]
else:
config["column_mapping"] = mapping
with open(get_yaml_path(uid), "w") as f:
# yaml Dumper will by default sort the keys
yaml.dump(config, f, Dumper=Dumper, sort_keys=False)
# convert column mapping dataframe to json
def convert_column_mapping_to_json(df, label=""):
column_mapping = {}
column_mapping[label] = []
for _, row in df.iterrows():
column_mapping[label].append(row.tolist())
return column_mapping
def get_log_file_with_uid(uid):
try:
print(f"Loading {uid}.log")
with open(f"./tmp/{uid}.log", "a") as file:
return file.read()
except Exception:
return "Log file does not exist"
def get_logs_file():
try:
with open(LOG_FILE, "r") as file:
return file.read()
except Exception:
return "Log file does not exist"
def write_log_to_user_file(task_id, log):
with open(f"./tmp/{task_id}.log", "a") as f:
f.write(log)
|