test-giskard-evaluator / run_jobs.py
ZeroCommand's picture
Upload folder using huggingface_hub
433de9b verified
import json
import logging
import os
import subprocess
import threading
import time
from pathlib import Path
import pipe
from app_env import (
HF_GSK_HUB_HF_TOKEN,
HF_GSK_HUB_KEY,
HF_GSK_HUB_PROJECT_KEY,
HF_GSK_HUB_UNLOCK_TOKEN,
HF_GSK_HUB_URL,
HF_REPO_ID,
HF_SPACE_ID,
HF_WRITE_TOKEN,
)
from io_utils import LOG_FILE, get_yaml_path, write_log_to_user_file
from isolated_env import prepare_venv
from leaderboard import LEADERBOARD
is_running = False
logger = logging.getLogger(__file__)
def start_process_run_job():
try:
logging.debug("Running jobs in thread")
global thread, is_running
thread = threading.Thread(target=run_job)
thread.daemon = True
is_running = True
thread.start()
except Exception as e:
print("Failed to start thread: ", e)
def stop_thread():
logging.debug("Stop thread")
global is_running
is_running = False
def prepare_env_and_get_command(
m_id,
d_id,
config,
split,
inference,
inference_token,
uid,
label_mapping,
feature_mapping,
):
leaderboard_dataset = None
if os.environ.get("SPACE_ID") == "giskardai/giskard-evaluator":
leaderboard_dataset = LEADERBOARD
inference_type = "hf_pipeline"
if inference and inference_token:
inference_type = "hf_inference_api"
executable = "giskard_scanner"
try:
# Copy the current requirements (might be changed)
with open("requirements.txt", "r") as f:
executable = prepare_venv(
uid,
"\n".join(f.readlines()),
)
logger.info(f"Using {executable} as executable")
except Exception as e:
logger.warn(f"Create env failed due to {e}, using the current env as fallback.")
executable = "giskard_scanner"
command = [
executable,
"--loader",
"huggingface",
"--model",
m_id,
"--dataset",
d_id,
"--dataset_config",
config,
"--dataset_split",
split,
"--output_format",
"markdown",
"--output_portal",
"huggingface",
"--feature_mapping",
json.dumps(feature_mapping),
"--label_mapping",
json.dumps(label_mapping),
"--scan_config",
get_yaml_path(uid),
"--inference_type",
inference_type,
"--inference_api_token",
inference_token,
]
# The token to publish post
if os.environ.get(HF_WRITE_TOKEN):
command.append("--hf_token")
command.append(os.environ.get(HF_WRITE_TOKEN))
# The repo to publish post
if os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID):
command.append("--discussion_repo")
# TODO: Replace by the model id
command.append(os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID))
# The repo to publish for ranking
if leaderboard_dataset:
command.append("--leaderboard_dataset")
command.append(leaderboard_dataset)
# The info to upload to Giskard hub
if os.environ.get(HF_GSK_HUB_KEY):
command.append("--giskard_hub_api_key")
command.append(os.environ.get(HF_GSK_HUB_KEY))
if os.environ.get(HF_GSK_HUB_URL):
command.append("--giskard_hub_url")
command.append(os.environ.get(HF_GSK_HUB_URL))
if os.environ.get(HF_GSK_HUB_PROJECT_KEY):
command.append("--giskard_hub_project_key")
command.append(os.environ.get(HF_GSK_HUB_PROJECT_KEY))
if os.environ.get(HF_GSK_HUB_HF_TOKEN):
command.append("--giskard_hub_hf_token")
command.append(os.environ.get(HF_GSK_HUB_HF_TOKEN))
if os.environ.get(HF_GSK_HUB_UNLOCK_TOKEN):
command.append("--giskard_hub_unlock_token")
command.append(os.environ.get(HF_GSK_HUB_UNLOCK_TOKEN))
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
write_log_to_user_file(
uid,
f"Start local evaluation on {eval_str}. Please wait for your job to start...\n",
)
return command
def save_job_to_pipe(task_id, job, description, lock):
with lock:
pipe.jobs.append((task_id, job, description))
def pop_job_from_pipe():
if len(pipe.jobs) == 0:
return
job_info = pipe.jobs.pop()
pipe.current = job_info[2]
task_id = job_info[0]
# Link to LOG_FILE
log_file_path = Path(LOG_FILE)
if log_file_path.exists():
log_file_path.unlink()
os.symlink(f"./tmp/{task_id}.log", LOG_FILE)
write_log_to_user_file(task_id, f"Running job id {task_id}\n")
command = prepare_env_and_get_command(*job_info[1])
with open(f"./tmp/{task_id}.log", "a") as log_file:
p = subprocess.Popen(command, stdout=log_file, stderr=subprocess.STDOUT)
p.wait()
pipe.current = None
def run_job():
global is_running
while is_running:
try:
pop_job_from_pipe()
time.sleep(10)
except KeyboardInterrupt:
logging.debug("KeyboardInterrupt stop background thread")
is_running = False
break