--- license: apache-2.0 pipeline_tag: image-text-to-text --- **
TinyLLaVA
** [![arXiv](https://img.shields.io/badge/Arxiv-2402.14289-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2402.14289)[![Github](https://img.shields.io/badge/Github-Github-blue.svg)](https://github.com/TinyLLaVA/TinyLLaVA_Factory)[![Demo](https://img.shields.io/badge/Demo-Demo-red.svg)](http://8843843nmph5.vicp.fun/#/) Here, we introduce TinyLLaVA-Qwen2-0.5B-SigLIP , which is trained by the [TinyLLaVA Factory](https://github.com/TinyLLaVA/TinyLLaVA_Factory) codebase. For LLM and vision tower, we choose [Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B) and [siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384), respectively. ### Usage Execute the following test code: ```python from transformers import AutoTokenizer, AutoModelForCausalLM hf_path = 'Zhang199/TinyLLaVA-Qwen2-0.5B-SigLIP' model = AutoModelForCausalLM.from_pretrained(hf_path, trust_remote_code=True) model.cuda() config = model.config tokenizer = AutoTokenizer.from_pretrained(hf_path, use_fast=False, model_max_length = config.tokenizer_model_max_length,padding_side = config.tokenizer_padding_side) prompt="What are these?" image_url="http://images.cocodataset.org/test-stuff2017/000000000001.jpg" output_text, genertaion_time = model.chat(prompt=prompt, image=image_url, tokenizer=tokenizer) print('model output:', output_text) print('runing time:', genertaion_time) ``` ### Result | model_name | vqav2 | gqa | sqa | textvqa | MM-VET | POPE | MME | MMMU | | :----------------------------------------------------------: | ----- | ------- | ----- | ----- | ------- | ----- | ------ | ------ | | [LLaVA-1.5-7B](https://huggingface.co/llava-hf/llava-1.5-7b-hf) | 78.5 | 62.0 | 66.8 | 58.2 | 30.5 | 85.9 | 1510.7 | - | | [bczhou/TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) (our legacy model) | 79.9 | 62.0 | 69.1 | 59.1 | 32.0 | 86.4 | 1464.9 | - | | [tinyllava/TinyLLaVA-Gemma-SigLIP-2.4B](https://huggingface.co/tinyllava/TinyLLaVA-Gemma-SigLIP-2.4B) | 78.4 | 61.6 | 64.4 | 53.6 | 26.9 | 86.4 | 1339.0 | 31.7 | | [tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B](https://huggingface.co/tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B) | 80.1 | 62.1 | 73.0 | 60.3 | 37.5 | 87.2 | 1466.4 | 38.4 | | [Zhang199/TinyLLaVA-Qwen2-0.5B-SigLIP](https://huggingface.co/Zhang199/TinyLLaVA-Qwen2-0.5B-SigLIP) | 72.33 | 55.84 | 60.14 | 45.17 | 19.5 | 86.59 | 1153 | 29.7 | P.S. [TinyLLaVA Factory](https://github.com/TinyLLaVA/TinyLLaVA_Factory) is an open-source modular codebase for small-scale LMMs with a focus on simplicity of code implementations, extensibility of new features, and reproducibility of training results. This code repository provides standard training&evaluating pipelines, flexible data preprocessing&model configurations, and easily extensible architectures. Users can customize their own LMMs with minimal coding effort and less coding mistake. TinyLLaVA Factory integrates a suite of cutting-edge models and methods. - LLM currently supports OpenELM, TinyLlama, StableLM, Qwen, Gemma, Phi, and Qwen2. - Vision tower currently supports CLIP, SigLIP, Dino, and combination of CLIP and Dino. - Connector currently supports MLP, Qformer, and Resampler.