Commit
·
fb60ce9
1
Parent(s):
c98f37f
Add the deployment option.
Browse files- handler.py +2 -12
- requirements.txt +2 -0
handler.py
CHANGED
@@ -9,6 +9,7 @@ from PIL import Image
|
|
9 |
import torch
|
10 |
from torchvision import transforms
|
11 |
from transformers import AutoModelForImageSegmentation
|
|
|
12 |
|
13 |
torch.set_float32_matmul_precision(["high", "highest"][0])
|
14 |
|
@@ -104,18 +105,7 @@ class EndpointHandler():
|
|
104 |
A :obj:`list` | `dict`: will be serialized and returned
|
105 |
"""
|
106 |
print('data["inputs"] = ', data["inputs"])
|
107 |
-
|
108 |
-
if isinstance(image_src, str):
|
109 |
-
if os.path.isfile(image_src):
|
110 |
-
image_ori = Image.open(image_src)
|
111 |
-
else:
|
112 |
-
response = requests.get(image_src)
|
113 |
-
image_data = BytesIO(response.content)
|
114 |
-
image_ori = Image.open(image_data)
|
115 |
-
else:
|
116 |
-
image_ori = Image.fromarray(image_src)
|
117 |
-
|
118 |
-
image = image_ori.convert('RGB')
|
119 |
# Preprocess the image
|
120 |
image_preprocessor = ImagePreprocessor(resolution=tuple(resolution))
|
121 |
image_proc = image_preprocessor.proc(image)
|
|
|
9 |
import torch
|
10 |
from torchvision import transforms
|
11 |
from transformers import AutoModelForImageSegmentation
|
12 |
+
from loadimg import load_img
|
13 |
|
14 |
torch.set_float32_matmul_precision(["high", "highest"][0])
|
15 |
|
|
|
105 |
A :obj:`list` | `dict`: will be serialized and returned
|
106 |
"""
|
107 |
print('data["inputs"] = ', data["inputs"])
|
108 |
+
image = load_img(data["inputs"]).convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
# Preprocess the image
|
110 |
image_preprocessor = ImagePreprocessor(resolution=tuple(resolution))
|
111 |
image_proc = image_preprocessor.proc(image)
|
requirements.txt
CHANGED
@@ -16,3 +16,5 @@ prettytable
|
|
16 |
transformers
|
17 |
huggingface-hub>0.25
|
18 |
accelerate
|
|
|
|
|
|
16 |
transformers
|
17 |
huggingface-hub>0.25
|
18 |
accelerate
|
19 |
+
|
20 |
+
loadimg
|