ZhengPeng7 commited on
Commit
63478f6
·
verified ·
1 Parent(s): c07903b

Add the description of what is the meaning of the dynamic in this model.

Browse files
Files changed (1) hide show
  1. README.md +6 -2
README.md CHANGED
@@ -16,6 +16,9 @@ license: mit
16
  ---
17
  <h1 align="center">Bilateral Reference for High-Resolution Dichotomous Image Segmentation</h1>
18
 
 
 
 
19
  <div align='center'>
20
  <a href='https://scholar.google.com/citations?user=TZRzWOsAAAAJ' target='_blank'><strong>Peng Zheng</strong></a><sup> 1,4,5,6</sup>,&thinsp;
21
  <a href='https://scholar.google.com/citations?user=0uPb8MMAAAAJ' target='_blank'><strong>Dehong Gao</strong></a><sup> 2</sup>,&thinsp;
@@ -118,9 +121,10 @@ birefnet.half()
118
 
119
  def extract_object(birefnet, imagepath):
120
  # Data settings
121
- image_size = (1024, 1024)
 
122
  transform_image = transforms.Compose([
123
- transforms.Resize(image_size),
124
  transforms.ToTensor(),
125
  transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
126
  ])
 
16
  ---
17
  <h1 align="center">Bilateral Reference for High-Resolution Dichotomous Image Segmentation</h1>
18
 
19
+ > An arbitrary shape adaptable BiRefNet for general segmentation.
20
+ > This model was trained on arbitrary shapes (256x256 ~ 2304x2304) and shows great robustness on inputs with any shape.
21
+
22
  <div align='center'>
23
  <a href='https://scholar.google.com/citations?user=TZRzWOsAAAAJ' target='_blank'><strong>Peng Zheng</strong></a><sup> 1,4,5,6</sup>,&thinsp;
24
  <a href='https://scholar.google.com/citations?user=0uPb8MMAAAAJ' target='_blank'><strong>Dehong Gao</strong></a><sup> 2</sup>,&thinsp;
 
121
 
122
  def extract_object(birefnet, imagepath):
123
  # Data settings
124
+ # image_size = (1024, 1024)
125
+ # Since this model was trained on arbitrary shapes (256x256 ~ 2304x2304), the resizing is not necessary.
126
  transform_image = transforms.Compose([
127
+ # transforms.Resize(image_size),
128
  transforms.ToTensor(),
129
  transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
130
  ])