Add the description of what is the meaning of the dynamic in this model.
Browse files
README.md
CHANGED
@@ -16,6 +16,9 @@ license: mit
|
|
16 |
---
|
17 |
<h1 align="center">Bilateral Reference for High-Resolution Dichotomous Image Segmentation</h1>
|
18 |
|
|
|
|
|
|
|
19 |
<div align='center'>
|
20 |
<a href='https://scholar.google.com/citations?user=TZRzWOsAAAAJ' target='_blank'><strong>Peng Zheng</strong></a><sup> 1,4,5,6</sup>, 
|
21 |
<a href='https://scholar.google.com/citations?user=0uPb8MMAAAAJ' target='_blank'><strong>Dehong Gao</strong></a><sup> 2</sup>, 
|
@@ -118,9 +121,10 @@ birefnet.half()
|
|
118 |
|
119 |
def extract_object(birefnet, imagepath):
|
120 |
# Data settings
|
121 |
-
image_size = (1024, 1024)
|
|
|
122 |
transform_image = transforms.Compose([
|
123 |
-
transforms.Resize(image_size),
|
124 |
transforms.ToTensor(),
|
125 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
126 |
])
|
|
|
16 |
---
|
17 |
<h1 align="center">Bilateral Reference for High-Resolution Dichotomous Image Segmentation</h1>
|
18 |
|
19 |
+
> An arbitrary shape adaptable BiRefNet for general segmentation.
|
20 |
+
> This model was trained on arbitrary shapes (256x256 ~ 2304x2304) and shows great robustness on inputs with any shape.
|
21 |
+
|
22 |
<div align='center'>
|
23 |
<a href='https://scholar.google.com/citations?user=TZRzWOsAAAAJ' target='_blank'><strong>Peng Zheng</strong></a><sup> 1,4,5,6</sup>, 
|
24 |
<a href='https://scholar.google.com/citations?user=0uPb8MMAAAAJ' target='_blank'><strong>Dehong Gao</strong></a><sup> 2</sup>, 
|
|
|
121 |
|
122 |
def extract_object(birefnet, imagepath):
|
123 |
# Data settings
|
124 |
+
# image_size = (1024, 1024)
|
125 |
+
# Since this model was trained on arbitrary shapes (256x256 ~ 2304x2304), the resizing is not necessary.
|
126 |
transform_image = transforms.Compose([
|
127 |
+
# transforms.Resize(image_size),
|
128 |
transforms.ToTensor(),
|
129 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
130 |
])
|