Initial commit
Browse files- LICENSE +21 -0
- README copy.md +141 -0
- config/train.yaml +14 -0
- dataset/gtzan_test.h5 +3 -0
- dataset/gtzan_train.h5 +3 -0
- diffusion/__init__.py +46 -0
- diffusion/diffusion_utils.py +88 -0
- diffusion/gaussian_diffusion.py +873 -0
- diffusion/respace.py +129 -0
- diffusion/timestep_sampler.py +150 -0
- gtzan-ck/model_epoch_20000.pt +3 -0
- gtzan-test.csv +101 -0
- models.py +375 -0
- requirement.txt +26 -0
- sample.py +135 -0
- sample/gn/blues_blues.00000.mp3 +0 -0
- sample/gn/blues_blues.00001.mp3 +0 -0
- sample/gn/blues_blues.00002.mp3 +0 -0
- sample/gn/blues_blues.00003.mp3 +0 -0
- sample/gn/blues_blues.00004.mp3 +0 -0
- sample/gn/blues_blues.00005.mp3 +0 -0
- sample/gn/blues_blues.00006.mp3 +0 -0
- sample/gn/blues_blues.00007.mp3 +0 -0
- sample/gn/blues_blues.00008.mp3 +0 -0
- sample/gn/blues_blues.00009.mp3 +0 -0
- sample/gt/blues_blues.00000.mp3 +0 -0
- sample/gt/blues_blues.00001.mp3 +0 -0
- sample/gt/blues_blues.00002.mp3 +0 -0
- sample/gt/blues_blues.00003.mp3 +0 -0
- sample/gt/blues_blues.00004.mp3 +0 -0
- sample/gt/blues_blues.00005.mp3 +0 -0
- sample/gt/blues_blues.00006.mp3 +0 -0
- sample/gt/blues_blues.00007.mp3 +0 -0
- sample/gt/blues_blues.00008.mp3 +0 -0
- sample/gt/blues_blues.00009.mp3 +0 -0
- tools/bigvgan_v2_22khz_80band_256x +1 -0
- tools/gtzan2h5.py +160 -0
- tools/gtzan_split.py +98 -0
- train.py +114 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 AudioFans
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README copy.md
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Musimple:Text2Music with DiT Made simple
|
2 |
+
|
3 |
+
## Introduction
|
4 |
+
|
5 |
+
This repository provides a simple and clear implementation of a **Text-to-Music Generation** pipeline using a **DiT (Diffusion Transformer)** model. The codebase includes key components such as **model training**, **inference**, and **evaluation**. We use the **GTZAN dataset** as an example to demonstrate a minimal, working pipeline for text-conditioned music generation.
|
6 |
+
|
7 |
+
The repository is designed to be easy to use and customize, making it simple to reproduce our results on a single **NVIDIA RTX 4090 GPU**. Additionally, the code is structured to be flexible, allowing you to modify it for your own tasks and datasets.
|
8 |
+
|
9 |
+
We plan to continue maintaining and improving this repository with new features, model improvements, and extended documentation in the future.
|
10 |
+
|
11 |
+
## Features
|
12 |
+
|
13 |
+
- **Text-to-Music Generation**: Generate music directly from text descriptions using a DiT model.
|
14 |
+
- **GTZAN Example**: A simple pipeline using the GTZAN dataset to demonstrate the workflow.
|
15 |
+
- **End-to-End Pipeline**: Includes model training, inference, and evaluation with support for generating audio files.
|
16 |
+
- **Customizable**: Easy to modify and extend for different datasets or use cases.
|
17 |
+
- **Single GPU Training**: Optimized for training on a single RTX 4090 GPU but adaptable to different hardware setups.
|
18 |
+
|
19 |
+
## Requirements
|
20 |
+
|
21 |
+
Before using the code, ensure that the following dependencies are installed:
|
22 |
+
|
23 |
+
- Python >= 3.9
|
24 |
+
- CUDA (if available)
|
25 |
+
- Required Python libraries from `requirements.txt`
|
26 |
+
|
27 |
+
You can install the dependencies using:
|
28 |
+
|
29 |
+
```bash
|
30 |
+
conda create -n musimple python=3.9
|
31 |
+
conda activate musimple
|
32 |
+
pip install -r requirements.txt
|
33 |
+
```
|
34 |
+
|
35 |
+
|
36 |
+
## Data Preprocessing
|
37 |
+
|
38 |
+
To begin with, you will need to download the **GTZAN dataset**. Once downloaded, you can use the `gtzan_split.py` script located in the `tools` directory to split the dataset into training and testing sets. Run the following command:
|
39 |
+
|
40 |
+
```bash
|
41 |
+
python gtzan_split.py --root_dir /path/to/gtzan/genres --output_dir /path/to/output/directory
|
42 |
+
```
|
43 |
+
|
44 |
+
Next, convert the audio files into an HDF5 format using the gtzan2h5.py script:
|
45 |
+
|
46 |
+
```bash
|
47 |
+
python gtzan2h5.py --root_dir /path/to/audio/files --output_h5_file /path/to/output.h5 --config_path bigvgan_v2_22khz_80band_256x/config.json --sr 22050
|
48 |
+
```
|
49 |
+
|
50 |
+
Preprocessed Data
|
51 |
+
If this process seems cumbersome, don’t worry! **We have already preprocessed the dataset**, and you can find it in the **musimple/dataset** directory. You can download and use this data directly to skip the preprocessing steps.
|
52 |
+
|
53 |
+
Data Breakdown
|
54 |
+
In this preprocessing stage, there are two main parts:
|
55 |
+
|
56 |
+
Text to Latent Transformation: We use a Sentence Transformer to convert text labels into latent representations.
|
57 |
+
Audio to Mel Spectrogram: The original audio files are converted into mel spectrograms.
|
58 |
+
Both the latent representations and mel spectrograms are stored in an HDF5 file, making them easily accessible during training and inference.
|
59 |
+
|
60 |
+
## Training
|
61 |
+
|
62 |
+
To begin training, simply navigate to the `Musimple` directory and run the following command:
|
63 |
+
|
64 |
+
```bash
|
65 |
+
cd Musimple
|
66 |
+
python train.py
|
67 |
+
```
|
68 |
+
|
69 |
+
Configurable Parameters
|
70 |
+
All training-related parameters can be adjusted in the configuration file located at:
|
71 |
+
```
|
72 |
+
./config/train.yaml
|
73 |
+
```
|
74 |
+
This allows you to easily modify aspects like the learning rate, batch size, number of epochs, and more to suit your hardware or dataset requirements.
|
75 |
+
|
76 |
+
We also provide a **pre-trained checkpoint** trained for two days on a single **NVIDIA RTX 4090**. You can use this checkpoint for inference or fine-tuning. The key training parameters for this checkpoint are as follows:
|
77 |
+
|
78 |
+
- `batch_size`: 48
|
79 |
+
- `mel_frames`: 800
|
80 |
+
- `lr`: 0.0001
|
81 |
+
- `num_epochs`: 100000
|
82 |
+
- `sample_interval`: 250
|
83 |
+
- `h5_file_path`: './dataset/gtzan_train.h5'
|
84 |
+
- `device`: 'cuda:4'
|
85 |
+
- `input_size`: [80, 800]
|
86 |
+
- `patch_size`: 8
|
87 |
+
- `in_channels`: 1
|
88 |
+
- `hidden_size`: 384
|
89 |
+
- `depth`: 12
|
90 |
+
- `num_heads`: 6
|
91 |
+
- `checkpoint_dir`: 'gtzan-ck'
|
92 |
+
|
93 |
+
You can modify the model architecture and parameters in the `train.yaml` configuration file to compare your models against ours. We will continue to release more checkpoints and models in future updates.
|
94 |
+
|
95 |
+
## Inference
|
96 |
+
|
97 |
+
Once you have trained your own model, you can perform inference using the trained model. To do so, run the following command:
|
98 |
+
|
99 |
+
```bash
|
100 |
+
python sample.py --checkpoint ./gtzan-ck/model_epoch_20000.pt \
|
101 |
+
--h5_file ./dataset/gtzan_test.h5 \
|
102 |
+
--output_gt_dir ./sample/gt \
|
103 |
+
--output_gen_dir ./sample/gn \
|
104 |
+
--segment_length 800 \
|
105 |
+
--sample_rate 22050
|
106 |
+
```
|
107 |
+
You can also try running inference using our pre-trained model to familiarize yourself with the inference process. We have saved some inference results in the sample folder as a demo. However, due to the limited size of our model, the generated results are not of the highest quality and are intended as simple examples to guide further evaluation.
|
108 |
+
|
109 |
+
## Evaluation
|
110 |
+
|
111 |
+
For the evaluation phase, we highly recommend creating a new environment and using the evaluation library available at [Generated Music Evaluation](https://github.com/HarlandZZC/generated_music_evaluation). This repository provides detailed instructions on setting up the environment and how to use the evaluation tools. New features and functionality will be added to this library over time.
|
112 |
+
|
113 |
+
Once you have set up the environment following the instructions from the evaluation repository, you can run the following script to evaluate your generated music:
|
114 |
+
|
115 |
+
```bash
|
116 |
+
python eval.py \
|
117 |
+
--ref_path ../sample/gt \
|
118 |
+
--gen_path ../sample/gn \
|
119 |
+
--id2text_csv_path ../gtzan-test.csv \
|
120 |
+
--output_path ./output \
|
121 |
+
--device_id 0 \
|
122 |
+
--batch_size 32 \
|
123 |
+
--original_sample_rate 24000 \
|
124 |
+
--fad_sample_rate 16000 \
|
125 |
+
--kl_sample_rate 16000 \
|
126 |
+
--clap_sample_rate 48000 \
|
127 |
+
--run_fad 1 \
|
128 |
+
--run_kl 1 \
|
129 |
+
--run_clap 1
|
130 |
+
```
|
131 |
+
|
132 |
+
This script evaluates the generated music against reference music, producing evaluation metrics such as CLAP, KL, and FAD scores.
|
133 |
+
|
134 |
+
## To-Do
|
135 |
+
|
136 |
+
The following features and improvements are planned for future updates:
|
137 |
+
|
138 |
+
- **EMA Model**: Implement Exponential Moving Average (EMA) for model weights to stabilize training and improve final generation quality.
|
139 |
+
- **Long-Term Music Fine-tuning**: Explore fine-tuning the model to generate longer-term music with more coherent structures.
|
140 |
+
- **VAE Integration**: Integrate a Variational Autoencoder (VAE) to improve latent space representations and potentially enhance generation diversity.
|
141 |
+
- **T5-based Text Conditioning**: Add T5 to enhance text conditioning, improving the control and accuracy of the text-to-music generation process.
|
config/train.yaml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
batch_size: 48
|
2 |
+
mel_frames: 800
|
3 |
+
lr: 0.0001
|
4 |
+
num_epochs: 100000
|
5 |
+
sample_interval: 250
|
6 |
+
h5_file_path: './dataset/gtzan_train.h5'
|
7 |
+
device: 'cuda:4'
|
8 |
+
input_size: [80, 800]
|
9 |
+
patch_size: 8
|
10 |
+
in_channels: 1
|
11 |
+
hidden_size: 384
|
12 |
+
depth: 12
|
13 |
+
num_heads: 6
|
14 |
+
checkpoint_dir: 'gtzan-ck'
|
dataset/gtzan_test.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f9c40a6548fcd65c8bf4296968e1bf8289ba422e9fdfacd6745d4c9dfc86082
|
3 |
+
size 90507648
|
dataset/gtzan_train.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:682e8998af88b14af1132d3fafc916f30fcfe21d4e91743fa2e91828667b9d6d
|
3 |
+
size 813506352
|
diffusion/__init__.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
from . import gaussian_diffusion as gd
|
7 |
+
from .respace import SpacedDiffusion, space_timesteps
|
8 |
+
|
9 |
+
|
10 |
+
def create_diffusion(
|
11 |
+
timestep_respacing,
|
12 |
+
noise_schedule="linear",
|
13 |
+
use_kl=False,
|
14 |
+
sigma_small=False,
|
15 |
+
predict_xstart=False,
|
16 |
+
learn_sigma=True,
|
17 |
+
rescale_learned_sigmas=False,
|
18 |
+
diffusion_steps=1000
|
19 |
+
):
|
20 |
+
betas = gd.get_named_beta_schedule(noise_schedule, diffusion_steps)
|
21 |
+
if use_kl:
|
22 |
+
loss_type = gd.LossType.RESCALED_KL
|
23 |
+
elif rescale_learned_sigmas:
|
24 |
+
loss_type = gd.LossType.RESCALED_MSE
|
25 |
+
else:
|
26 |
+
loss_type = gd.LossType.MSE
|
27 |
+
if timestep_respacing is None or timestep_respacing == "":
|
28 |
+
timestep_respacing = [diffusion_steps]
|
29 |
+
return SpacedDiffusion(
|
30 |
+
use_timesteps=space_timesteps(diffusion_steps, timestep_respacing),
|
31 |
+
betas=betas,
|
32 |
+
model_mean_type=(
|
33 |
+
gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X
|
34 |
+
),
|
35 |
+
model_var_type=(
|
36 |
+
(
|
37 |
+
gd.ModelVarType.FIXED_LARGE
|
38 |
+
if not sigma_small
|
39 |
+
else gd.ModelVarType.FIXED_SMALL
|
40 |
+
)
|
41 |
+
if not learn_sigma
|
42 |
+
else gd.ModelVarType.LEARNED_RANGE
|
43 |
+
),
|
44 |
+
loss_type=loss_type
|
45 |
+
# rescale_timesteps=rescale_timesteps,
|
46 |
+
)
|
diffusion/diffusion_utils.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
import torch as th
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
|
10 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
11 |
+
"""
|
12 |
+
Compute the KL divergence between two gaussians.
|
13 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
14 |
+
scalars, among other use cases.
|
15 |
+
"""
|
16 |
+
tensor = None
|
17 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
18 |
+
if isinstance(obj, th.Tensor):
|
19 |
+
tensor = obj
|
20 |
+
break
|
21 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
22 |
+
|
23 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
24 |
+
# Tensors, but it does not work for th.exp().
|
25 |
+
logvar1, logvar2 = [
|
26 |
+
x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor)
|
27 |
+
for x in (logvar1, logvar2)
|
28 |
+
]
|
29 |
+
|
30 |
+
return 0.5 * (
|
31 |
+
-1.0
|
32 |
+
+ logvar2
|
33 |
+
- logvar1
|
34 |
+
+ th.exp(logvar1 - logvar2)
|
35 |
+
+ ((mean1 - mean2) ** 2) * th.exp(-logvar2)
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
def approx_standard_normal_cdf(x):
|
40 |
+
"""
|
41 |
+
A fast approximation of the cumulative distribution function of the
|
42 |
+
standard normal.
|
43 |
+
"""
|
44 |
+
return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3))))
|
45 |
+
|
46 |
+
|
47 |
+
def continuous_gaussian_log_likelihood(x, *, means, log_scales):
|
48 |
+
"""
|
49 |
+
Compute the log-likelihood of a continuous Gaussian distribution.
|
50 |
+
:param x: the targets
|
51 |
+
:param means: the Gaussian mean Tensor.
|
52 |
+
:param log_scales: the Gaussian log stddev Tensor.
|
53 |
+
:return: a tensor like x of log probabilities (in nats).
|
54 |
+
"""
|
55 |
+
centered_x = x - means
|
56 |
+
inv_stdv = th.exp(-log_scales)
|
57 |
+
normalized_x = centered_x * inv_stdv
|
58 |
+
log_probs = th.distributions.Normal(th.zeros_like(x), th.ones_like(x)).log_prob(normalized_x)
|
59 |
+
return log_probs
|
60 |
+
|
61 |
+
|
62 |
+
def discretized_gaussian_log_likelihood(x, *, means, log_scales):
|
63 |
+
"""
|
64 |
+
Compute the log-likelihood of a Gaussian distribution discretizing to a
|
65 |
+
given image.
|
66 |
+
:param x: the target images. It is assumed that this was uint8 values,
|
67 |
+
rescaled to the range [-1, 1].
|
68 |
+
:param means: the Gaussian mean Tensor.
|
69 |
+
:param log_scales: the Gaussian log stddev Tensor.
|
70 |
+
:return: a tensor like x of log probabilities (in nats).
|
71 |
+
"""
|
72 |
+
assert x.shape == means.shape == log_scales.shape
|
73 |
+
centered_x = x - means
|
74 |
+
inv_stdv = th.exp(-log_scales)
|
75 |
+
plus_in = inv_stdv * (centered_x + 1.0 / 255.0)
|
76 |
+
cdf_plus = approx_standard_normal_cdf(plus_in)
|
77 |
+
min_in = inv_stdv * (centered_x - 1.0 / 255.0)
|
78 |
+
cdf_min = approx_standard_normal_cdf(min_in)
|
79 |
+
log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12))
|
80 |
+
log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12))
|
81 |
+
cdf_delta = cdf_plus - cdf_min
|
82 |
+
log_probs = th.where(
|
83 |
+
x < -0.999,
|
84 |
+
log_cdf_plus,
|
85 |
+
th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))),
|
86 |
+
)
|
87 |
+
assert log_probs.shape == x.shape
|
88 |
+
return log_probs
|
diffusion/gaussian_diffusion.py
ADDED
@@ -0,0 +1,873 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
|
7 |
+
import math
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import torch as th
|
11 |
+
import enum
|
12 |
+
|
13 |
+
from .diffusion_utils import discretized_gaussian_log_likelihood, normal_kl
|
14 |
+
|
15 |
+
|
16 |
+
def mean_flat(tensor):
|
17 |
+
"""
|
18 |
+
Take the mean over all non-batch dimensions.
|
19 |
+
"""
|
20 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
21 |
+
|
22 |
+
|
23 |
+
class ModelMeanType(enum.Enum):
|
24 |
+
"""
|
25 |
+
Which type of output the model predicts.
|
26 |
+
"""
|
27 |
+
|
28 |
+
PREVIOUS_X = enum.auto() # the model predicts x_{t-1}
|
29 |
+
START_X = enum.auto() # the model predicts x_0
|
30 |
+
EPSILON = enum.auto() # the model predicts epsilon
|
31 |
+
|
32 |
+
|
33 |
+
class ModelVarType(enum.Enum):
|
34 |
+
"""
|
35 |
+
What is used as the model's output variance.
|
36 |
+
The LEARNED_RANGE option has been added to allow the model to predict
|
37 |
+
values between FIXED_SMALL and FIXED_LARGE, making its job easier.
|
38 |
+
"""
|
39 |
+
|
40 |
+
LEARNED = enum.auto()
|
41 |
+
FIXED_SMALL = enum.auto()
|
42 |
+
FIXED_LARGE = enum.auto()
|
43 |
+
LEARNED_RANGE = enum.auto()
|
44 |
+
|
45 |
+
|
46 |
+
class LossType(enum.Enum):
|
47 |
+
MSE = enum.auto() # use raw MSE loss (and KL when learning variances)
|
48 |
+
RESCALED_MSE = (
|
49 |
+
enum.auto()
|
50 |
+
) # use raw MSE loss (with RESCALED_KL when learning variances)
|
51 |
+
KL = enum.auto() # use the variational lower-bound
|
52 |
+
RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB
|
53 |
+
|
54 |
+
def is_vb(self):
|
55 |
+
return self == LossType.KL or self == LossType.RESCALED_KL
|
56 |
+
|
57 |
+
|
58 |
+
def _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, warmup_frac):
|
59 |
+
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
|
60 |
+
warmup_time = int(num_diffusion_timesteps * warmup_frac)
|
61 |
+
betas[:warmup_time] = np.linspace(beta_start, beta_end, warmup_time, dtype=np.float64)
|
62 |
+
return betas
|
63 |
+
|
64 |
+
|
65 |
+
def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_timesteps):
|
66 |
+
"""
|
67 |
+
This is the deprecated API for creating beta schedules.
|
68 |
+
See get_named_beta_schedule() for the new library of schedules.
|
69 |
+
"""
|
70 |
+
if beta_schedule == "quad":
|
71 |
+
betas = (
|
72 |
+
np.linspace(
|
73 |
+
beta_start ** 0.5,
|
74 |
+
beta_end ** 0.5,
|
75 |
+
num_diffusion_timesteps,
|
76 |
+
dtype=np.float64,
|
77 |
+
)
|
78 |
+
** 2
|
79 |
+
)
|
80 |
+
elif beta_schedule == "linear":
|
81 |
+
betas = np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64)
|
82 |
+
elif beta_schedule == "warmup10":
|
83 |
+
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.1)
|
84 |
+
elif beta_schedule == "warmup50":
|
85 |
+
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.5)
|
86 |
+
elif beta_schedule == "const":
|
87 |
+
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
|
88 |
+
elif beta_schedule == "jsd": # 1/T, 1/(T-1), 1/(T-2), ..., 1
|
89 |
+
betas = 1.0 / np.linspace(
|
90 |
+
num_diffusion_timesteps, 1, num_diffusion_timesteps, dtype=np.float64
|
91 |
+
)
|
92 |
+
else:
|
93 |
+
raise NotImplementedError(beta_schedule)
|
94 |
+
assert betas.shape == (num_diffusion_timesteps,)
|
95 |
+
return betas
|
96 |
+
|
97 |
+
|
98 |
+
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
|
99 |
+
"""
|
100 |
+
Get a pre-defined beta schedule for the given name.
|
101 |
+
The beta schedule library consists of beta schedules which remain similar
|
102 |
+
in the limit of num_diffusion_timesteps.
|
103 |
+
Beta schedules may be added, but should not be removed or changed once
|
104 |
+
they are committed to maintain backwards compatibility.
|
105 |
+
"""
|
106 |
+
if schedule_name == "linear":
|
107 |
+
# Linear schedule from Ho et al, extended to work for any number of
|
108 |
+
# diffusion steps.
|
109 |
+
scale = 1000 / num_diffusion_timesteps
|
110 |
+
return get_beta_schedule(
|
111 |
+
"linear",
|
112 |
+
beta_start=scale * 0.0001,
|
113 |
+
beta_end=scale * 0.02,
|
114 |
+
num_diffusion_timesteps=num_diffusion_timesteps,
|
115 |
+
)
|
116 |
+
elif schedule_name == "squaredcos_cap_v2":
|
117 |
+
return betas_for_alpha_bar(
|
118 |
+
num_diffusion_timesteps,
|
119 |
+
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
|
120 |
+
)
|
121 |
+
else:
|
122 |
+
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
|
123 |
+
|
124 |
+
|
125 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
126 |
+
"""
|
127 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
128 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
129 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
130 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
131 |
+
produces the cumulative product of (1-beta) up to that
|
132 |
+
part of the diffusion process.
|
133 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
134 |
+
prevent singularities.
|
135 |
+
"""
|
136 |
+
betas = []
|
137 |
+
for i in range(num_diffusion_timesteps):
|
138 |
+
t1 = i / num_diffusion_timesteps
|
139 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
140 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
141 |
+
return np.array(betas)
|
142 |
+
|
143 |
+
|
144 |
+
class GaussianDiffusion:
|
145 |
+
"""
|
146 |
+
Utilities for training and sampling diffusion models.
|
147 |
+
Original ported from this codebase:
|
148 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
|
149 |
+
:param betas: a 1-D numpy array of betas for each diffusion timestep,
|
150 |
+
starting at T and going to 1.
|
151 |
+
"""
|
152 |
+
|
153 |
+
def __init__(
|
154 |
+
self,
|
155 |
+
*,
|
156 |
+
betas,
|
157 |
+
model_mean_type,
|
158 |
+
model_var_type,
|
159 |
+
loss_type
|
160 |
+
):
|
161 |
+
|
162 |
+
self.model_mean_type = model_mean_type
|
163 |
+
self.model_var_type = model_var_type
|
164 |
+
self.loss_type = loss_type
|
165 |
+
|
166 |
+
# Use float64 for accuracy.
|
167 |
+
betas = np.array(betas, dtype=np.float64)
|
168 |
+
self.betas = betas
|
169 |
+
assert len(betas.shape) == 1, "betas must be 1-D"
|
170 |
+
assert (betas > 0).all() and (betas <= 1).all()
|
171 |
+
|
172 |
+
self.num_timesteps = int(betas.shape[0])
|
173 |
+
|
174 |
+
alphas = 1.0 - betas
|
175 |
+
self.alphas_cumprod = np.cumprod(alphas, axis=0)
|
176 |
+
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
|
177 |
+
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
|
178 |
+
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)
|
179 |
+
|
180 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
181 |
+
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
|
182 |
+
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
|
183 |
+
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
|
184 |
+
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
|
185 |
+
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
|
186 |
+
|
187 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
188 |
+
self.posterior_variance = (
|
189 |
+
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
|
190 |
+
)
|
191 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
192 |
+
self.posterior_log_variance_clipped = np.log(
|
193 |
+
np.append(self.posterior_variance[1], self.posterior_variance[1:])
|
194 |
+
) if len(self.posterior_variance) > 1 else np.array([])
|
195 |
+
|
196 |
+
self.posterior_mean_coef1 = (
|
197 |
+
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
|
198 |
+
)
|
199 |
+
self.posterior_mean_coef2 = (
|
200 |
+
(1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod)
|
201 |
+
)
|
202 |
+
|
203 |
+
def q_mean_variance(self, x_start, t):
|
204 |
+
"""
|
205 |
+
Get the distribution q(x_t | x_0).
|
206 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
207 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
208 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
209 |
+
"""
|
210 |
+
mean = _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
211 |
+
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
212 |
+
log_variance = _extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
213 |
+
return mean, variance, log_variance
|
214 |
+
|
215 |
+
def q_sample(self, x_start, t, noise=None):
|
216 |
+
"""
|
217 |
+
Diffuse the data for a given number of diffusion steps.
|
218 |
+
In other words, sample from q(x_t | x_0).
|
219 |
+
:param x_start: the initial data batch.
|
220 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
221 |
+
:param noise: if specified, the split-out normal noise.
|
222 |
+
:return: A noisy version of x_start.
|
223 |
+
"""
|
224 |
+
if noise is None:
|
225 |
+
noise = th.randn_like(x_start)
|
226 |
+
assert noise.shape == x_start.shape
|
227 |
+
return (
|
228 |
+
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
229 |
+
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
|
230 |
+
)
|
231 |
+
|
232 |
+
def q_posterior_mean_variance(self, x_start, x_t, t):
|
233 |
+
"""
|
234 |
+
Compute the mean and variance of the diffusion posterior:
|
235 |
+
q(x_{t-1} | x_t, x_0)
|
236 |
+
"""
|
237 |
+
assert x_start.shape == x_t.shape
|
238 |
+
posterior_mean = (
|
239 |
+
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
|
240 |
+
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
241 |
+
)
|
242 |
+
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
243 |
+
posterior_log_variance_clipped = _extract_into_tensor(
|
244 |
+
self.posterior_log_variance_clipped, t, x_t.shape
|
245 |
+
)
|
246 |
+
assert (
|
247 |
+
posterior_mean.shape[0]
|
248 |
+
== posterior_variance.shape[0]
|
249 |
+
== posterior_log_variance_clipped.shape[0]
|
250 |
+
== x_start.shape[0]
|
251 |
+
)
|
252 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
253 |
+
|
254 |
+
def p_mean_variance(self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None):
|
255 |
+
"""
|
256 |
+
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
|
257 |
+
the initial x, x_0.
|
258 |
+
:param model: the model, which takes a signal and a batch of timesteps
|
259 |
+
as input.
|
260 |
+
:param x: the [N x C x ...] tensor at time t.
|
261 |
+
:param t: a 1-D Tensor of timesteps.
|
262 |
+
:param clip_denoised: if True, clip the denoised signal into [-1, 1].
|
263 |
+
:param denoised_fn: if not None, a function which applies to the
|
264 |
+
x_start prediction before it is used to sample. Applies before
|
265 |
+
clip_denoised.
|
266 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
267 |
+
pass to the model. This can be used for conditioning.
|
268 |
+
:return: a dict with the following keys:
|
269 |
+
- 'mean': the model mean output.
|
270 |
+
- 'variance': the model variance output.
|
271 |
+
- 'log_variance': the log of 'variance'.
|
272 |
+
- 'pred_xstart': the prediction for x_0.
|
273 |
+
"""
|
274 |
+
if model_kwargs is None:
|
275 |
+
model_kwargs = {}
|
276 |
+
|
277 |
+
B, C = x.shape[:2]
|
278 |
+
assert t.shape == (B,)
|
279 |
+
model_output = model(x, t, **model_kwargs)
|
280 |
+
if isinstance(model_output, tuple):
|
281 |
+
model_output, extra = model_output
|
282 |
+
else:
|
283 |
+
extra = None
|
284 |
+
|
285 |
+
if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
|
286 |
+
assert model_output.shape == (B, C * 2, *x.shape[2:])
|
287 |
+
model_output, model_var_values = th.split(model_output, C, dim=1)
|
288 |
+
min_log = _extract_into_tensor(self.posterior_log_variance_clipped, t, x.shape)
|
289 |
+
max_log = _extract_into_tensor(np.log(self.betas), t, x.shape)
|
290 |
+
# The model_var_values is [-1, 1] for [min_var, max_var].
|
291 |
+
frac = (model_var_values + 1) / 2
|
292 |
+
model_log_variance = frac * max_log + (1 - frac) * min_log
|
293 |
+
model_variance = th.exp(model_log_variance)
|
294 |
+
else:
|
295 |
+
model_variance, model_log_variance = {
|
296 |
+
# for fixedlarge, we set the initial (log-)variance like so
|
297 |
+
# to get a better decoder log likelihood.
|
298 |
+
ModelVarType.FIXED_LARGE: (
|
299 |
+
np.append(self.posterior_variance[1], self.betas[1:]),
|
300 |
+
np.log(np.append(self.posterior_variance[1], self.betas[1:])),
|
301 |
+
),
|
302 |
+
ModelVarType.FIXED_SMALL: (
|
303 |
+
self.posterior_variance,
|
304 |
+
self.posterior_log_variance_clipped,
|
305 |
+
),
|
306 |
+
}[self.model_var_type]
|
307 |
+
model_variance = _extract_into_tensor(model_variance, t, x.shape)
|
308 |
+
model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape)
|
309 |
+
|
310 |
+
def process_xstart(x):
|
311 |
+
if denoised_fn is not None:
|
312 |
+
x = denoised_fn(x)
|
313 |
+
if clip_denoised:
|
314 |
+
return x.clamp(-1, 1)
|
315 |
+
return x
|
316 |
+
|
317 |
+
if self.model_mean_type == ModelMeanType.START_X:
|
318 |
+
pred_xstart = process_xstart(model_output)
|
319 |
+
else:
|
320 |
+
pred_xstart = process_xstart(
|
321 |
+
self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)
|
322 |
+
)
|
323 |
+
model_mean, _, _ = self.q_posterior_mean_variance(x_start=pred_xstart, x_t=x, t=t)
|
324 |
+
|
325 |
+
assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
|
326 |
+
return {
|
327 |
+
"mean": model_mean,
|
328 |
+
"variance": model_variance,
|
329 |
+
"log_variance": model_log_variance,
|
330 |
+
"pred_xstart": pred_xstart,
|
331 |
+
"extra": extra,
|
332 |
+
}
|
333 |
+
|
334 |
+
def _predict_xstart_from_eps(self, x_t, t, eps):
|
335 |
+
assert x_t.shape == eps.shape
|
336 |
+
return (
|
337 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
338 |
+
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
|
339 |
+
)
|
340 |
+
|
341 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
342 |
+
return (
|
343 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart
|
344 |
+
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
345 |
+
|
346 |
+
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
347 |
+
"""
|
348 |
+
Compute the mean for the previous step, given a function cond_fn that
|
349 |
+
computes the gradient of a conditional log probability with respect to
|
350 |
+
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to
|
351 |
+
condition on y.
|
352 |
+
This uses the conditioning strategy from Sohl-Dickstein et al. (2015).
|
353 |
+
"""
|
354 |
+
gradient = cond_fn(x, t, **model_kwargs)
|
355 |
+
new_mean = p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float()
|
356 |
+
return new_mean
|
357 |
+
|
358 |
+
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
359 |
+
"""
|
360 |
+
Compute what the p_mean_variance output would have been, should the
|
361 |
+
model's score function be conditioned by cond_fn.
|
362 |
+
See condition_mean() for details on cond_fn.
|
363 |
+
Unlike condition_mean(), this instead uses the conditioning strategy
|
364 |
+
from Song et al (2020).
|
365 |
+
"""
|
366 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
367 |
+
|
368 |
+
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"])
|
369 |
+
eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, t, **model_kwargs)
|
370 |
+
|
371 |
+
out = p_mean_var.copy()
|
372 |
+
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps)
|
373 |
+
out["mean"], _, _ = self.q_posterior_mean_variance(x_start=out["pred_xstart"], x_t=x, t=t)
|
374 |
+
return out
|
375 |
+
|
376 |
+
def p_sample(
|
377 |
+
self,
|
378 |
+
model,
|
379 |
+
x,
|
380 |
+
t,
|
381 |
+
clip_denoised=True,
|
382 |
+
denoised_fn=None,
|
383 |
+
cond_fn=None,
|
384 |
+
model_kwargs=None,
|
385 |
+
):
|
386 |
+
"""
|
387 |
+
Sample x_{t-1} from the model at the given timestep.
|
388 |
+
:param model: the model to sample from.
|
389 |
+
:param x: the current tensor at x_{t-1}.
|
390 |
+
:param t: the value of t, starting at 0 for the first diffusion step.
|
391 |
+
:param clip_denoised: if True, clip the x_start prediction to [-1, 1].
|
392 |
+
:param denoised_fn: if not None, a function which applies to the
|
393 |
+
x_start prediction before it is used to sample.
|
394 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
395 |
+
similarly to the model.
|
396 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
397 |
+
pass to the model. This can be used for conditioning.
|
398 |
+
:return: a dict containing the following keys:
|
399 |
+
- 'sample': a random sample from the model.
|
400 |
+
- 'pred_xstart': a prediction of x_0.
|
401 |
+
"""
|
402 |
+
out = self.p_mean_variance(
|
403 |
+
model,
|
404 |
+
x,
|
405 |
+
t,
|
406 |
+
clip_denoised=clip_denoised,
|
407 |
+
denoised_fn=denoised_fn,
|
408 |
+
model_kwargs=model_kwargs,
|
409 |
+
)
|
410 |
+
noise = th.randn_like(x)
|
411 |
+
nonzero_mask = (
|
412 |
+
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
413 |
+
) # no noise when t == 0
|
414 |
+
if cond_fn is not None:
|
415 |
+
out["mean"] = self.condition_mean(cond_fn, out, x, t, model_kwargs=model_kwargs)
|
416 |
+
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
|
417 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
418 |
+
|
419 |
+
def p_sample_loop(
|
420 |
+
self,
|
421 |
+
model,
|
422 |
+
shape,
|
423 |
+
noise=None,
|
424 |
+
clip_denoised=True,
|
425 |
+
denoised_fn=None,
|
426 |
+
cond_fn=None,
|
427 |
+
model_kwargs=None,
|
428 |
+
device=None,
|
429 |
+
progress=False,
|
430 |
+
):
|
431 |
+
"""
|
432 |
+
Generate samples from the model.
|
433 |
+
:param model: the model module.
|
434 |
+
:param shape: the shape of the samples, (N, C, H, W).
|
435 |
+
:param noise: if specified, the noise from the encoder to sample.
|
436 |
+
Should be of the same shape as `shape`.
|
437 |
+
:param clip_denoised: if True, clip x_start predictions to [-1, 1].
|
438 |
+
:param denoised_fn: if not None, a function which applies to the
|
439 |
+
x_start prediction before it is used to sample.
|
440 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
441 |
+
similarly to the model.
|
442 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
443 |
+
pass to the model. This can be used for conditioning.
|
444 |
+
:param device: if specified, the device to create the samples on.
|
445 |
+
If not specified, use a model parameter's device.
|
446 |
+
:param progress: if True, show a tqdm progress bar.
|
447 |
+
:return: a non-differentiable batch of samples.
|
448 |
+
"""
|
449 |
+
final = None
|
450 |
+
for sample in self.p_sample_loop_progressive(
|
451 |
+
model,
|
452 |
+
shape,
|
453 |
+
noise=noise,
|
454 |
+
clip_denoised=clip_denoised,
|
455 |
+
denoised_fn=denoised_fn,
|
456 |
+
cond_fn=cond_fn,
|
457 |
+
model_kwargs=model_kwargs,
|
458 |
+
device=device,
|
459 |
+
progress=progress,
|
460 |
+
):
|
461 |
+
final = sample
|
462 |
+
return final["sample"]
|
463 |
+
|
464 |
+
def p_sample_loop_progressive(
|
465 |
+
self,
|
466 |
+
model,
|
467 |
+
shape,
|
468 |
+
noise=None,
|
469 |
+
clip_denoised=True,
|
470 |
+
denoised_fn=None,
|
471 |
+
cond_fn=None,
|
472 |
+
model_kwargs=None,
|
473 |
+
device=None,
|
474 |
+
progress=False,
|
475 |
+
):
|
476 |
+
"""
|
477 |
+
Generate samples from the model and yield intermediate samples from
|
478 |
+
each timestep of diffusion.
|
479 |
+
Arguments are the same as p_sample_loop().
|
480 |
+
Returns a generator over dicts, where each dict is the return value of
|
481 |
+
p_sample().
|
482 |
+
"""
|
483 |
+
if device is None:
|
484 |
+
device = next(model.parameters()).device
|
485 |
+
assert isinstance(shape, (tuple, list))
|
486 |
+
if noise is not None:
|
487 |
+
img = noise
|
488 |
+
else:
|
489 |
+
img = th.randn(*shape, device=device)
|
490 |
+
indices = list(range(self.num_timesteps))[::-1]
|
491 |
+
|
492 |
+
if progress:
|
493 |
+
# Lazy import so that we don't depend on tqdm.
|
494 |
+
from tqdm.auto import tqdm
|
495 |
+
|
496 |
+
indices = tqdm(indices)
|
497 |
+
|
498 |
+
for i in indices:
|
499 |
+
t = th.tensor([i] * shape[0], device=device)
|
500 |
+
with th.no_grad():
|
501 |
+
out = self.p_sample(
|
502 |
+
model,
|
503 |
+
img,
|
504 |
+
t,
|
505 |
+
clip_denoised=clip_denoised,
|
506 |
+
denoised_fn=denoised_fn,
|
507 |
+
cond_fn=cond_fn,
|
508 |
+
model_kwargs=model_kwargs,
|
509 |
+
)
|
510 |
+
yield out
|
511 |
+
img = out["sample"]
|
512 |
+
|
513 |
+
def ddim_sample(
|
514 |
+
self,
|
515 |
+
model,
|
516 |
+
x,
|
517 |
+
t,
|
518 |
+
clip_denoised=True,
|
519 |
+
denoised_fn=None,
|
520 |
+
cond_fn=None,
|
521 |
+
model_kwargs=None,
|
522 |
+
eta=0.0,
|
523 |
+
):
|
524 |
+
"""
|
525 |
+
Sample x_{t-1} from the model using DDIM.
|
526 |
+
Same usage as p_sample().
|
527 |
+
"""
|
528 |
+
out = self.p_mean_variance(
|
529 |
+
model,
|
530 |
+
x,
|
531 |
+
t,
|
532 |
+
clip_denoised=clip_denoised,
|
533 |
+
denoised_fn=denoised_fn,
|
534 |
+
model_kwargs=model_kwargs,
|
535 |
+
)
|
536 |
+
if cond_fn is not None:
|
537 |
+
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs)
|
538 |
+
|
539 |
+
# Usually our model outputs epsilon, but we re-derive it
|
540 |
+
# in case we used x_start or x_prev prediction.
|
541 |
+
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
|
542 |
+
|
543 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
544 |
+
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)
|
545 |
+
sigma = (
|
546 |
+
eta
|
547 |
+
* th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar))
|
548 |
+
* th.sqrt(1 - alpha_bar / alpha_bar_prev)
|
549 |
+
)
|
550 |
+
# Equation 12.
|
551 |
+
noise = th.randn_like(x)
|
552 |
+
mean_pred = (
|
553 |
+
out["pred_xstart"] * th.sqrt(alpha_bar_prev)
|
554 |
+
+ th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps
|
555 |
+
)
|
556 |
+
nonzero_mask = (
|
557 |
+
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
558 |
+
) # no noise when t == 0
|
559 |
+
sample = mean_pred + nonzero_mask * sigma * noise
|
560 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
561 |
+
|
562 |
+
def ddim_reverse_sample(
|
563 |
+
self,
|
564 |
+
model,
|
565 |
+
x,
|
566 |
+
t,
|
567 |
+
clip_denoised=True,
|
568 |
+
denoised_fn=None,
|
569 |
+
cond_fn=None,
|
570 |
+
model_kwargs=None,
|
571 |
+
eta=0.0,
|
572 |
+
):
|
573 |
+
"""
|
574 |
+
Sample x_{t+1} from the model using DDIM reverse ODE.
|
575 |
+
"""
|
576 |
+
assert eta == 0.0, "Reverse ODE only for deterministic path"
|
577 |
+
out = self.p_mean_variance(
|
578 |
+
model,
|
579 |
+
x,
|
580 |
+
t,
|
581 |
+
clip_denoised=clip_denoised,
|
582 |
+
denoised_fn=denoised_fn,
|
583 |
+
model_kwargs=model_kwargs,
|
584 |
+
)
|
585 |
+
if cond_fn is not None:
|
586 |
+
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs)
|
587 |
+
# Usually our model outputs epsilon, but we re-derive it
|
588 |
+
# in case we used x_start or x_prev prediction.
|
589 |
+
eps = (
|
590 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
|
591 |
+
- out["pred_xstart"]
|
592 |
+
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape)
|
593 |
+
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape)
|
594 |
+
|
595 |
+
# Equation 12. reversed
|
596 |
+
mean_pred = out["pred_xstart"] * th.sqrt(alpha_bar_next) + th.sqrt(1 - alpha_bar_next) * eps
|
597 |
+
|
598 |
+
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]}
|
599 |
+
|
600 |
+
def ddim_sample_loop(
|
601 |
+
self,
|
602 |
+
model,
|
603 |
+
shape,
|
604 |
+
noise=None,
|
605 |
+
clip_denoised=True,
|
606 |
+
denoised_fn=None,
|
607 |
+
cond_fn=None,
|
608 |
+
model_kwargs=None,
|
609 |
+
device=None,
|
610 |
+
progress=False,
|
611 |
+
eta=0.0,
|
612 |
+
):
|
613 |
+
"""
|
614 |
+
Generate samples from the model using DDIM.
|
615 |
+
Same usage as p_sample_loop().
|
616 |
+
"""
|
617 |
+
final = None
|
618 |
+
for sample in self.ddim_sample_loop_progressive(
|
619 |
+
model,
|
620 |
+
shape,
|
621 |
+
noise=noise,
|
622 |
+
clip_denoised=clip_denoised,
|
623 |
+
denoised_fn=denoised_fn,
|
624 |
+
cond_fn=cond_fn,
|
625 |
+
model_kwargs=model_kwargs,
|
626 |
+
device=device,
|
627 |
+
progress=progress,
|
628 |
+
eta=eta,
|
629 |
+
):
|
630 |
+
final = sample
|
631 |
+
return final["sample"]
|
632 |
+
|
633 |
+
def ddim_sample_loop_progressive(
|
634 |
+
self,
|
635 |
+
model,
|
636 |
+
shape,
|
637 |
+
noise=None,
|
638 |
+
clip_denoised=True,
|
639 |
+
denoised_fn=None,
|
640 |
+
cond_fn=None,
|
641 |
+
model_kwargs=None,
|
642 |
+
device=None,
|
643 |
+
progress=False,
|
644 |
+
eta=0.0,
|
645 |
+
):
|
646 |
+
"""
|
647 |
+
Use DDIM to sample from the model and yield intermediate samples from
|
648 |
+
each timestep of DDIM.
|
649 |
+
Same usage as p_sample_loop_progressive().
|
650 |
+
"""
|
651 |
+
if device is None:
|
652 |
+
device = next(model.parameters()).device
|
653 |
+
assert isinstance(shape, (tuple, list))
|
654 |
+
if noise is not None:
|
655 |
+
img = noise
|
656 |
+
else:
|
657 |
+
img = th.randn(*shape, device=device)
|
658 |
+
indices = list(range(self.num_timesteps))[::-1]
|
659 |
+
|
660 |
+
if progress:
|
661 |
+
# Lazy import so that we don't depend on tqdm.
|
662 |
+
from tqdm.auto import tqdm
|
663 |
+
|
664 |
+
indices = tqdm(indices)
|
665 |
+
|
666 |
+
for i in indices:
|
667 |
+
t = th.tensor([i] * shape[0], device=device)
|
668 |
+
with th.no_grad():
|
669 |
+
out = self.ddim_sample(
|
670 |
+
model,
|
671 |
+
img,
|
672 |
+
t,
|
673 |
+
clip_denoised=clip_denoised,
|
674 |
+
denoised_fn=denoised_fn,
|
675 |
+
cond_fn=cond_fn,
|
676 |
+
model_kwargs=model_kwargs,
|
677 |
+
eta=eta,
|
678 |
+
)
|
679 |
+
yield out
|
680 |
+
img = out["sample"]
|
681 |
+
|
682 |
+
def _vb_terms_bpd(
|
683 |
+
self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None
|
684 |
+
):
|
685 |
+
"""
|
686 |
+
Get a term for the variational lower-bound.
|
687 |
+
The resulting units are bits (rather than nats, as one might expect).
|
688 |
+
This allows for comparison to other papers.
|
689 |
+
:return: a dict with the following keys:
|
690 |
+
- 'output': a shape [N] tensor of NLLs or KLs.
|
691 |
+
- 'pred_xstart': the x_0 predictions.
|
692 |
+
"""
|
693 |
+
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(
|
694 |
+
x_start=x_start, x_t=x_t, t=t
|
695 |
+
)
|
696 |
+
out = self.p_mean_variance(
|
697 |
+
model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs
|
698 |
+
)
|
699 |
+
kl = normal_kl(
|
700 |
+
true_mean, true_log_variance_clipped, out["mean"], out["log_variance"]
|
701 |
+
)
|
702 |
+
kl = mean_flat(kl) / np.log(2.0)
|
703 |
+
|
704 |
+
decoder_nll = -discretized_gaussian_log_likelihood(
|
705 |
+
x_start, means=out["mean"], log_scales=0.5 * out["log_variance"]
|
706 |
+
)
|
707 |
+
assert decoder_nll.shape == x_start.shape
|
708 |
+
decoder_nll = mean_flat(decoder_nll) / np.log(2.0)
|
709 |
+
|
710 |
+
# At the first timestep return the decoder NLL,
|
711 |
+
# otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
|
712 |
+
output = th.where((t == 0), decoder_nll, kl)
|
713 |
+
return {"output": output, "pred_xstart": out["pred_xstart"]}
|
714 |
+
|
715 |
+
def training_losses(self, model, x_start, t, model_kwargs=None, noise=None):
|
716 |
+
"""
|
717 |
+
Compute training losses for a single timestep.
|
718 |
+
:param model: the model to evaluate loss on.
|
719 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
720 |
+
:param t: a batch of timestep indices.
|
721 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
722 |
+
pass to the model. This can be used for conditioning.
|
723 |
+
:param noise: if specified, the specific Gaussian noise to try to remove.
|
724 |
+
:return: a dict with the key "loss" containing a tensor of shape [N].
|
725 |
+
Some mean or variance settings may also have other keys.
|
726 |
+
"""
|
727 |
+
if model_kwargs is None:
|
728 |
+
model_kwargs = {}
|
729 |
+
if noise is None:
|
730 |
+
noise = th.randn_like(x_start)
|
731 |
+
x_t = self.q_sample(x_start, t, noise=noise)
|
732 |
+
|
733 |
+
terms = {}
|
734 |
+
|
735 |
+
if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL:
|
736 |
+
terms["loss"] = self._vb_terms_bpd(
|
737 |
+
model=model,
|
738 |
+
x_start=x_start,
|
739 |
+
x_t=x_t,
|
740 |
+
t=t,
|
741 |
+
clip_denoised=False,
|
742 |
+
model_kwargs=model_kwargs,
|
743 |
+
)["output"]
|
744 |
+
if self.loss_type == LossType.RESCALED_KL:
|
745 |
+
terms["loss"] *= self.num_timesteps
|
746 |
+
elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE:
|
747 |
+
model_output = model(x_t, t, **model_kwargs)
|
748 |
+
|
749 |
+
if self.model_var_type in [
|
750 |
+
ModelVarType.LEARNED,
|
751 |
+
ModelVarType.LEARNED_RANGE,
|
752 |
+
]:
|
753 |
+
B, C = x_t.shape[:2]
|
754 |
+
assert model_output.shape == (B, C * 2, *x_t.shape[2:])
|
755 |
+
model_output, model_var_values = th.split(model_output, C, dim=1)
|
756 |
+
# Learn the variance using the variational bound, but don't let
|
757 |
+
# it affect our mean prediction.
|
758 |
+
frozen_out = th.cat([model_output.detach(), model_var_values], dim=1)
|
759 |
+
terms["vb"] = self._vb_terms_bpd(
|
760 |
+
model=lambda *args, r=frozen_out: r,
|
761 |
+
x_start=x_start,
|
762 |
+
x_t=x_t,
|
763 |
+
t=t,
|
764 |
+
clip_denoised=False,
|
765 |
+
)["output"]
|
766 |
+
if self.loss_type == LossType.RESCALED_MSE:
|
767 |
+
# Divide by 1000 for equivalence with initial implementation.
|
768 |
+
# Without a factor of 1/1000, the VB term hurts the MSE term.
|
769 |
+
terms["vb"] *= self.num_timesteps / 1000.0
|
770 |
+
|
771 |
+
target = {
|
772 |
+
ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance(
|
773 |
+
x_start=x_start, x_t=x_t, t=t
|
774 |
+
)[0],
|
775 |
+
ModelMeanType.START_X: x_start,
|
776 |
+
ModelMeanType.EPSILON: noise,
|
777 |
+
}[self.model_mean_type]
|
778 |
+
assert model_output.shape == target.shape == x_start.shape
|
779 |
+
terms["mse"] = mean_flat((target - model_output) ** 2)
|
780 |
+
if "vb" in terms:
|
781 |
+
terms["loss"] = terms["mse"] + terms["vb"]
|
782 |
+
else:
|
783 |
+
terms["loss"] = terms["mse"]
|
784 |
+
else:
|
785 |
+
raise NotImplementedError(self.loss_type)
|
786 |
+
|
787 |
+
return terms
|
788 |
+
|
789 |
+
def _prior_bpd(self, x_start):
|
790 |
+
"""
|
791 |
+
Get the prior KL term for the variational lower-bound, measured in
|
792 |
+
bits-per-dim.
|
793 |
+
This term can't be optimized, as it only depends on the encoder.
|
794 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
795 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
796 |
+
"""
|
797 |
+
batch_size = x_start.shape[0]
|
798 |
+
t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
799 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
800 |
+
kl_prior = normal_kl(
|
801 |
+
mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0
|
802 |
+
)
|
803 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
804 |
+
|
805 |
+
def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None):
|
806 |
+
"""
|
807 |
+
Compute the entire variational lower-bound, measured in bits-per-dim,
|
808 |
+
as well as other related quantities.
|
809 |
+
:param model: the model to evaluate loss on.
|
810 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
811 |
+
:param clip_denoised: if True, clip denoised samples.
|
812 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
813 |
+
pass to the model. This can be used for conditioning.
|
814 |
+
:return: a dict containing the following keys:
|
815 |
+
- total_bpd: the total variational lower-bound, per batch element.
|
816 |
+
- prior_bpd: the prior term in the lower-bound.
|
817 |
+
- vb: an [N x T] tensor of terms in the lower-bound.
|
818 |
+
- xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep.
|
819 |
+
- mse: an [N x T] tensor of epsilon MSEs for each timestep.
|
820 |
+
"""
|
821 |
+
device = x_start.device
|
822 |
+
batch_size = x_start.shape[0]
|
823 |
+
|
824 |
+
vb = []
|
825 |
+
xstart_mse = []
|
826 |
+
mse = []
|
827 |
+
for t in list(range(self.num_timesteps))[::-1]:
|
828 |
+
t_batch = th.tensor([t] * batch_size, device=device)
|
829 |
+
noise = th.randn_like(x_start)
|
830 |
+
x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise)
|
831 |
+
# Calculate VLB term at the current timestep
|
832 |
+
with th.no_grad():
|
833 |
+
out = self._vb_terms_bpd(
|
834 |
+
model,
|
835 |
+
x_start=x_start,
|
836 |
+
x_t=x_t,
|
837 |
+
t=t_batch,
|
838 |
+
clip_denoised=clip_denoised,
|
839 |
+
model_kwargs=model_kwargs,
|
840 |
+
)
|
841 |
+
vb.append(out["output"])
|
842 |
+
xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2))
|
843 |
+
eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"])
|
844 |
+
mse.append(mean_flat((eps - noise) ** 2))
|
845 |
+
|
846 |
+
vb = th.stack(vb, dim=1)
|
847 |
+
xstart_mse = th.stack(xstart_mse, dim=1)
|
848 |
+
mse = th.stack(mse, dim=1)
|
849 |
+
|
850 |
+
prior_bpd = self._prior_bpd(x_start)
|
851 |
+
total_bpd = vb.sum(dim=1) + prior_bpd
|
852 |
+
return {
|
853 |
+
"total_bpd": total_bpd,
|
854 |
+
"prior_bpd": prior_bpd,
|
855 |
+
"vb": vb,
|
856 |
+
"xstart_mse": xstart_mse,
|
857 |
+
"mse": mse,
|
858 |
+
}
|
859 |
+
|
860 |
+
|
861 |
+
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
862 |
+
"""
|
863 |
+
Extract values from a 1-D numpy array for a batch of indices.
|
864 |
+
:param arr: the 1-D numpy array.
|
865 |
+
:param timesteps: a tensor of indices into the array to extract.
|
866 |
+
:param broadcast_shape: a larger shape of K dimensions with the batch
|
867 |
+
dimension equal to the length of timesteps.
|
868 |
+
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
|
869 |
+
"""
|
870 |
+
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
|
871 |
+
while len(res.shape) < len(broadcast_shape):
|
872 |
+
res = res[..., None]
|
873 |
+
return res + th.zeros(broadcast_shape, device=timesteps.device)
|
diffusion/respace.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch as th
|
8 |
+
|
9 |
+
from .gaussian_diffusion import GaussianDiffusion
|
10 |
+
|
11 |
+
|
12 |
+
def space_timesteps(num_timesteps, section_counts):
|
13 |
+
"""
|
14 |
+
Create a list of timesteps to use from an original diffusion process,
|
15 |
+
given the number of timesteps we want to take from equally-sized portions
|
16 |
+
of the original process.
|
17 |
+
For example, if there's 300 timesteps and the section counts are [10,15,20]
|
18 |
+
then the first 100 timesteps are strided to be 10 timesteps, the second 100
|
19 |
+
are strided to be 15 timesteps, and the final 100 are strided to be 20.
|
20 |
+
If the stride is a string starting with "ddim", then the fixed striding
|
21 |
+
from the DDIM paper is used, and only one section is allowed.
|
22 |
+
:param num_timesteps: the number of diffusion steps in the original
|
23 |
+
process to divide up.
|
24 |
+
:param section_counts: either a list of numbers, or a string containing
|
25 |
+
comma-separated numbers, indicating the step count
|
26 |
+
per section. As a special case, use "ddimN" where N
|
27 |
+
is a number of steps to use the striding from the
|
28 |
+
DDIM paper.
|
29 |
+
:return: a set of diffusion steps from the original process to use.
|
30 |
+
"""
|
31 |
+
if isinstance(section_counts, str):
|
32 |
+
if section_counts.startswith("ddim"):
|
33 |
+
desired_count = int(section_counts[len("ddim") :])
|
34 |
+
for i in range(1, num_timesteps):
|
35 |
+
if len(range(0, num_timesteps, i)) == desired_count:
|
36 |
+
return set(range(0, num_timesteps, i))
|
37 |
+
raise ValueError(
|
38 |
+
f"cannot create exactly {num_timesteps} steps with an integer stride"
|
39 |
+
)
|
40 |
+
section_counts = [int(x) for x in section_counts.split(",")]
|
41 |
+
size_per = num_timesteps // len(section_counts)
|
42 |
+
extra = num_timesteps % len(section_counts)
|
43 |
+
start_idx = 0
|
44 |
+
all_steps = []
|
45 |
+
for i, section_count in enumerate(section_counts):
|
46 |
+
size = size_per + (1 if i < extra else 0)
|
47 |
+
if size < section_count:
|
48 |
+
raise ValueError(
|
49 |
+
f"cannot divide section of {size} steps into {section_count}"
|
50 |
+
)
|
51 |
+
if section_count <= 1:
|
52 |
+
frac_stride = 1
|
53 |
+
else:
|
54 |
+
frac_stride = (size - 1) / (section_count - 1)
|
55 |
+
cur_idx = 0.0
|
56 |
+
taken_steps = []
|
57 |
+
for _ in range(section_count):
|
58 |
+
taken_steps.append(start_idx + round(cur_idx))
|
59 |
+
cur_idx += frac_stride
|
60 |
+
all_steps += taken_steps
|
61 |
+
start_idx += size
|
62 |
+
return set(all_steps)
|
63 |
+
|
64 |
+
|
65 |
+
class SpacedDiffusion(GaussianDiffusion):
|
66 |
+
"""
|
67 |
+
A diffusion process which can skip steps in a base diffusion process.
|
68 |
+
:param use_timesteps: a collection (sequence or set) of timesteps from the
|
69 |
+
original diffusion process to retain.
|
70 |
+
:param kwargs: the kwargs to create the base diffusion process.
|
71 |
+
"""
|
72 |
+
|
73 |
+
def __init__(self, use_timesteps, **kwargs):
|
74 |
+
self.use_timesteps = set(use_timesteps)
|
75 |
+
self.timestep_map = []
|
76 |
+
self.original_num_steps = len(kwargs["betas"])
|
77 |
+
|
78 |
+
base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa
|
79 |
+
last_alpha_cumprod = 1.0
|
80 |
+
new_betas = []
|
81 |
+
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
|
82 |
+
if i in self.use_timesteps:
|
83 |
+
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
|
84 |
+
last_alpha_cumprod = alpha_cumprod
|
85 |
+
self.timestep_map.append(i)
|
86 |
+
kwargs["betas"] = np.array(new_betas)
|
87 |
+
super().__init__(**kwargs)
|
88 |
+
|
89 |
+
def p_mean_variance(
|
90 |
+
self, model, *args, **kwargs
|
91 |
+
): # pylint: disable=signature-differs
|
92 |
+
return super().p_mean_variance(self._wrap_model(model), *args, **kwargs)
|
93 |
+
|
94 |
+
def training_losses(
|
95 |
+
self, model, *args, **kwargs
|
96 |
+
): # pylint: disable=signature-differs
|
97 |
+
return super().training_losses(self._wrap_model(model), *args, **kwargs)
|
98 |
+
|
99 |
+
def condition_mean(self, cond_fn, *args, **kwargs):
|
100 |
+
return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs)
|
101 |
+
|
102 |
+
def condition_score(self, cond_fn, *args, **kwargs):
|
103 |
+
return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs)
|
104 |
+
|
105 |
+
def _wrap_model(self, model):
|
106 |
+
if isinstance(model, _WrappedModel):
|
107 |
+
return model
|
108 |
+
return _WrappedModel(
|
109 |
+
model, self.timestep_map, self.original_num_steps
|
110 |
+
)
|
111 |
+
|
112 |
+
def _scale_timesteps(self, t):
|
113 |
+
# Scaling is done by the wrapped model.
|
114 |
+
return t
|
115 |
+
|
116 |
+
|
117 |
+
class _WrappedModel:
|
118 |
+
def __init__(self, model, timestep_map, original_num_steps):
|
119 |
+
self.model = model
|
120 |
+
self.timestep_map = timestep_map
|
121 |
+
# self.rescale_timesteps = rescale_timesteps
|
122 |
+
self.original_num_steps = original_num_steps
|
123 |
+
|
124 |
+
def __call__(self, x, ts, **kwargs):
|
125 |
+
map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype)
|
126 |
+
new_ts = map_tensor[ts]
|
127 |
+
# if self.rescale_timesteps:
|
128 |
+
# new_ts = new_ts.float() * (1000.0 / self.original_num_steps)
|
129 |
+
return self.model(x, new_ts, **kwargs)
|
diffusion/timestep_sampler.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
from abc import ABC, abstractmethod
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch as th
|
10 |
+
import torch.distributed as dist
|
11 |
+
|
12 |
+
|
13 |
+
def create_named_schedule_sampler(name, diffusion):
|
14 |
+
"""
|
15 |
+
Create a ScheduleSampler from a library of pre-defined samplers.
|
16 |
+
:param name: the name of the sampler.
|
17 |
+
:param diffusion: the diffusion object to sample for.
|
18 |
+
"""
|
19 |
+
if name == "uniform":
|
20 |
+
return UniformSampler(diffusion)
|
21 |
+
elif name == "loss-second-moment":
|
22 |
+
return LossSecondMomentResampler(diffusion)
|
23 |
+
else:
|
24 |
+
raise NotImplementedError(f"unknown schedule sampler: {name}")
|
25 |
+
|
26 |
+
|
27 |
+
class ScheduleSampler(ABC):
|
28 |
+
"""
|
29 |
+
A distribution over timesteps in the diffusion process, intended to reduce
|
30 |
+
variance of the objective.
|
31 |
+
By default, samplers perform unbiased importance sampling, in which the
|
32 |
+
objective's mean is unchanged.
|
33 |
+
However, subclasses may override sample() to change how the resampled
|
34 |
+
terms are reweighted, allowing for actual changes in the objective.
|
35 |
+
"""
|
36 |
+
|
37 |
+
@abstractmethod
|
38 |
+
def weights(self):
|
39 |
+
"""
|
40 |
+
Get a numpy array of weights, one per diffusion step.
|
41 |
+
The weights needn't be normalized, but must be positive.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def sample(self, batch_size, device):
|
45 |
+
"""
|
46 |
+
Importance-sample timesteps for a batch.
|
47 |
+
:param batch_size: the number of timesteps.
|
48 |
+
:param device: the torch device to save to.
|
49 |
+
:return: a tuple (timesteps, weights):
|
50 |
+
- timesteps: a tensor of timestep indices.
|
51 |
+
- weights: a tensor of weights to scale the resulting losses.
|
52 |
+
"""
|
53 |
+
w = self.weights()
|
54 |
+
p = w / np.sum(w)
|
55 |
+
indices_np = np.random.choice(len(p), size=(batch_size,), p=p)
|
56 |
+
indices = th.from_numpy(indices_np).long().to(device)
|
57 |
+
weights_np = 1 / (len(p) * p[indices_np])
|
58 |
+
weights = th.from_numpy(weights_np).float().to(device)
|
59 |
+
return indices, weights
|
60 |
+
|
61 |
+
|
62 |
+
class UniformSampler(ScheduleSampler):
|
63 |
+
def __init__(self, diffusion):
|
64 |
+
self.diffusion = diffusion
|
65 |
+
self._weights = np.ones([diffusion.num_timesteps])
|
66 |
+
|
67 |
+
def weights(self):
|
68 |
+
return self._weights
|
69 |
+
|
70 |
+
|
71 |
+
class LossAwareSampler(ScheduleSampler):
|
72 |
+
def update_with_local_losses(self, local_ts, local_losses):
|
73 |
+
"""
|
74 |
+
Update the reweighting using losses from a model.
|
75 |
+
Call this method from each rank with a batch of timesteps and the
|
76 |
+
corresponding losses for each of those timesteps.
|
77 |
+
This method will perform synchronization to make sure all of the ranks
|
78 |
+
maintain the exact same reweighting.
|
79 |
+
:param local_ts: an integer Tensor of timesteps.
|
80 |
+
:param local_losses: a 1D Tensor of losses.
|
81 |
+
"""
|
82 |
+
batch_sizes = [
|
83 |
+
th.tensor([0], dtype=th.int32, device=local_ts.device)
|
84 |
+
for _ in range(dist.get_world_size())
|
85 |
+
]
|
86 |
+
dist.all_gather(
|
87 |
+
batch_sizes,
|
88 |
+
th.tensor([len(local_ts)], dtype=th.int32, device=local_ts.device),
|
89 |
+
)
|
90 |
+
|
91 |
+
# Pad all_gather batches to be the maximum batch size.
|
92 |
+
batch_sizes = [x.item() for x in batch_sizes]
|
93 |
+
max_bs = max(batch_sizes)
|
94 |
+
|
95 |
+
timestep_batches = [th.zeros(max_bs).to(local_ts) for bs in batch_sizes]
|
96 |
+
loss_batches = [th.zeros(max_bs).to(local_losses) for bs in batch_sizes]
|
97 |
+
dist.all_gather(timestep_batches, local_ts)
|
98 |
+
dist.all_gather(loss_batches, local_losses)
|
99 |
+
timesteps = [
|
100 |
+
x.item() for y, bs in zip(timestep_batches, batch_sizes) for x in y[:bs]
|
101 |
+
]
|
102 |
+
losses = [x.item() for y, bs in zip(loss_batches, batch_sizes) for x in y[:bs]]
|
103 |
+
self.update_with_all_losses(timesteps, losses)
|
104 |
+
|
105 |
+
@abstractmethod
|
106 |
+
def update_with_all_losses(self, ts, losses):
|
107 |
+
"""
|
108 |
+
Update the reweighting using losses from a model.
|
109 |
+
Sub-classes should override this method to update the reweighting
|
110 |
+
using losses from the model.
|
111 |
+
This method directly updates the reweighting without synchronizing
|
112 |
+
between workers. It is called by update_with_local_losses from all
|
113 |
+
ranks with identical arguments. Thus, it should have deterministic
|
114 |
+
behavior to maintain state across workers.
|
115 |
+
:param ts: a list of int timesteps.
|
116 |
+
:param losses: a list of float losses, one per timestep.
|
117 |
+
"""
|
118 |
+
|
119 |
+
|
120 |
+
class LossSecondMomentResampler(LossAwareSampler):
|
121 |
+
def __init__(self, diffusion, history_per_term=10, uniform_prob=0.001):
|
122 |
+
self.diffusion = diffusion
|
123 |
+
self.history_per_term = history_per_term
|
124 |
+
self.uniform_prob = uniform_prob
|
125 |
+
self._loss_history = np.zeros(
|
126 |
+
[diffusion.num_timesteps, history_per_term], dtype=np.float64
|
127 |
+
)
|
128 |
+
self._loss_counts = np.zeros([diffusion.num_timesteps], dtype=np.int)
|
129 |
+
|
130 |
+
def weights(self):
|
131 |
+
if not self._warmed_up():
|
132 |
+
return np.ones([self.diffusion.num_timesteps], dtype=np.float64)
|
133 |
+
weights = np.sqrt(np.mean(self._loss_history ** 2, axis=-1))
|
134 |
+
weights /= np.sum(weights)
|
135 |
+
weights *= 1 - self.uniform_prob
|
136 |
+
weights += self.uniform_prob / len(weights)
|
137 |
+
return weights
|
138 |
+
|
139 |
+
def update_with_all_losses(self, ts, losses):
|
140 |
+
for t, loss in zip(ts, losses):
|
141 |
+
if self._loss_counts[t] == self.history_per_term:
|
142 |
+
# Shift out the oldest loss term.
|
143 |
+
self._loss_history[t, :-1] = self._loss_history[t, 1:]
|
144 |
+
self._loss_history[t, -1] = loss
|
145 |
+
else:
|
146 |
+
self._loss_history[t, self._loss_counts[t]] = loss
|
147 |
+
self._loss_counts[t] += 1
|
148 |
+
|
149 |
+
def _warmed_up(self):
|
150 |
+
return (self._loss_counts == self.history_per_term).all()
|
gtzan-ck/model_epoch_20000.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47347904d66464d7c77044b00ec00c6c24ce4a034df87f8c3f735564b2a328cb
|
3 |
+
size 392135773
|
gtzan-test.csv
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ids,descri
|
2 |
+
classical_classical.00019,classical
|
3 |
+
rock_rock.00092,rock
|
4 |
+
reggae_reggae.00083,reggae
|
5 |
+
reggae_reggae.00087,reggae
|
6 |
+
country_country.00020,country
|
7 |
+
reggae_reggae.00080,reggae
|
8 |
+
metal_metal.00061,metal
|
9 |
+
jazz_jazz.00058,jazz
|
10 |
+
disco_disco.00033,disco
|
11 |
+
metal_metal.00068,metal
|
12 |
+
rock_rock.00096,rock
|
13 |
+
pop_pop.00070,pop
|
14 |
+
blues_blues.00001,blues
|
15 |
+
jazz_jazz.00050,jazz
|
16 |
+
country_country.00022,country
|
17 |
+
rock_rock.00095,rock
|
18 |
+
metal_metal.00066,metal
|
19 |
+
disco_disco.00032,disco
|
20 |
+
pop_pop.00071,pop
|
21 |
+
blues_blues.00006,blues
|
22 |
+
disco_disco.00039,disco
|
23 |
+
reggae_reggae.00081,reggae
|
24 |
+
reggae_reggae.00088,reggae
|
25 |
+
hiphop_hiphop.00046,hiphop
|
26 |
+
country_country.00023,country
|
27 |
+
hiphop_hiphop.00040,hiphop
|
28 |
+
classical_classical.00012,classical
|
29 |
+
reggae_reggae.00084,reggae
|
30 |
+
reggae_reggae.00085,reggae
|
31 |
+
hiphop_hiphop.00043,hiphop
|
32 |
+
jazz_jazz.00052,jazz
|
33 |
+
blues_blues.00004,blues
|
34 |
+
disco_disco.00037,disco
|
35 |
+
hiphop_hiphop.00047,hiphop
|
36 |
+
pop_pop.00076,pop
|
37 |
+
classical_classical.00014,classical
|
38 |
+
rock_rock.00090,rock
|
39 |
+
classical_classical.00013,classical
|
40 |
+
blues_blues.00002,blues
|
41 |
+
rock_rock.00098,rock
|
42 |
+
hiphop_hiphop.00044,hiphop
|
43 |
+
rock_rock.00099,rock
|
44 |
+
metal_metal.00065,metal
|
45 |
+
metal_metal.00062,metal
|
46 |
+
blues_blues.00007,blues
|
47 |
+
pop_pop.00073,pop
|
48 |
+
jazz_jazz.00053,jazz
|
49 |
+
country_country.00024,country
|
50 |
+
pop_pop.00078,pop
|
51 |
+
blues_blues.00000,blues
|
52 |
+
jazz_jazz.00055,jazz
|
53 |
+
blues_blues.00003,blues
|
54 |
+
hiphop_hiphop.00041,hiphop
|
55 |
+
hiphop_hiphop.00048,hiphop
|
56 |
+
pop_pop.00077,pop
|
57 |
+
metal_metal.00067,metal
|
58 |
+
reggae_reggae.00089,reggae
|
59 |
+
jazz_jazz.00056,jazz
|
60 |
+
hiphop_hiphop.00049,hiphop
|
61 |
+
disco_disco.00038,disco
|
62 |
+
jazz_jazz.00057,jazz
|
63 |
+
reggae_reggae.00082,reggae
|
64 |
+
rock_rock.00091,rock
|
65 |
+
metal_metal.00060,metal
|
66 |
+
country_country.00028,country
|
67 |
+
pop_pop.00075,pop
|
68 |
+
rock_rock.00094,rock
|
69 |
+
classical_classical.00010,classical
|
70 |
+
rock_rock.00097,rock
|
71 |
+
jazz_jazz.00051,jazz
|
72 |
+
country_country.00025,country
|
73 |
+
country_country.00029,country
|
74 |
+
country_country.00027,country
|
75 |
+
pop_pop.00072,pop
|
76 |
+
metal_metal.00063,metal
|
77 |
+
classical_classical.00011,classical
|
78 |
+
blues_blues.00008,blues
|
79 |
+
classical_classical.00018,classical
|
80 |
+
pop_pop.00079,pop
|
81 |
+
jazz_jazz.00059,jazz
|
82 |
+
disco_disco.00034,disco
|
83 |
+
country_country.00021,country
|
84 |
+
hiphop_hiphop.00045,hiphop
|
85 |
+
reggae_reggae.00086,reggae
|
86 |
+
metal_metal.00069,metal
|
87 |
+
classical_classical.00016,classical
|
88 |
+
classical_classical.00015,classical
|
89 |
+
disco_disco.00036,disco
|
90 |
+
blues_blues.00009,blues
|
91 |
+
country_country.00026,country
|
92 |
+
jazz_jazz.00054,jazz
|
93 |
+
disco_disco.00035,disco
|
94 |
+
pop_pop.00074,pop
|
95 |
+
rock_rock.00093,rock
|
96 |
+
hiphop_hiphop.00042,hiphop
|
97 |
+
disco_disco.00031,disco
|
98 |
+
blues_blues.00005,blues
|
99 |
+
disco_disco.00030,disco
|
100 |
+
classical_classical.00017,classical
|
101 |
+
metal_metal.00064,metal
|
models.py
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
# References:
|
8 |
+
# GLIDE: https://github.com/openai/glide-text2im
|
9 |
+
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
|
10 |
+
# --------------------------------------------------------
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import numpy as np
|
15 |
+
import math
|
16 |
+
from timm.models.vision_transformer import PatchEmbed, Attention, Mlp
|
17 |
+
|
18 |
+
|
19 |
+
def modulate(x, shift, scale):
|
20 |
+
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
21 |
+
|
22 |
+
|
23 |
+
#################################################################################
|
24 |
+
# Embedding Layers for Timesteps and Class Labels #
|
25 |
+
#################################################################################
|
26 |
+
|
27 |
+
class TimestepEmbedder(nn.Module):
|
28 |
+
"""
|
29 |
+
Embeds scalar timesteps into vector representations.
|
30 |
+
"""
|
31 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
32 |
+
super().__init__()
|
33 |
+
self.mlp = nn.Sequential(
|
34 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
35 |
+
nn.SiLU(),
|
36 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
37 |
+
)
|
38 |
+
self.frequency_embedding_size = frequency_embedding_size
|
39 |
+
|
40 |
+
@staticmethod
|
41 |
+
def timestep_embedding(t, dim, max_period=10000):
|
42 |
+
"""
|
43 |
+
Create sinusoidal timestep embeddings.
|
44 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
45 |
+
These may be fractional.
|
46 |
+
:param dim: the dimension of the output.
|
47 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
48 |
+
:return: an (N, D) Tensor of positional embeddings.
|
49 |
+
"""
|
50 |
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
51 |
+
half = dim // 2
|
52 |
+
freqs = torch.exp(
|
53 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
54 |
+
).to(device=t.device)
|
55 |
+
args = t[:, None].float() * freqs[None]
|
56 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
57 |
+
if dim % 2:
|
58 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
59 |
+
return embedding
|
60 |
+
|
61 |
+
def forward(self, t):
|
62 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
63 |
+
t_emb = self.mlp(t_freq)
|
64 |
+
return t_emb
|
65 |
+
|
66 |
+
|
67 |
+
class LabelEmbedder(nn.Module):
|
68 |
+
"""
|
69 |
+
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
70 |
+
"""
|
71 |
+
def __init__(self, num_classes, hidden_size, dropout_prob):
|
72 |
+
super().__init__()
|
73 |
+
use_cfg_embedding = dropout_prob > 0
|
74 |
+
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
|
75 |
+
self.num_classes = num_classes
|
76 |
+
self.dropout_prob = dropout_prob
|
77 |
+
|
78 |
+
def token_drop(self, labels, force_drop_ids=None):
|
79 |
+
"""
|
80 |
+
Drops labels to enable classifier-free guidance.
|
81 |
+
"""
|
82 |
+
if force_drop_ids is None:
|
83 |
+
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
|
84 |
+
else:
|
85 |
+
drop_ids = force_drop_ids == 1
|
86 |
+
labels = torch.where(drop_ids, self.num_classes, labels)
|
87 |
+
return labels
|
88 |
+
|
89 |
+
def forward(self, labels, train, force_drop_ids=None):
|
90 |
+
use_dropout = self.dropout_prob > 0
|
91 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
92 |
+
labels = self.token_drop(labels, force_drop_ids)
|
93 |
+
embeddings = self.embedding_table(labels)
|
94 |
+
return embeddings
|
95 |
+
|
96 |
+
|
97 |
+
#################################################################################
|
98 |
+
# Core DiT Model #
|
99 |
+
#################################################################################
|
100 |
+
|
101 |
+
class DiTBlock(nn.Module):
|
102 |
+
"""
|
103 |
+
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
|
104 |
+
"""
|
105 |
+
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
|
106 |
+
super().__init__()
|
107 |
+
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
108 |
+
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
|
109 |
+
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
110 |
+
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
111 |
+
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
112 |
+
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
|
113 |
+
self.adaLN_modulation = nn.Sequential(
|
114 |
+
nn.SiLU(),
|
115 |
+
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
|
116 |
+
)
|
117 |
+
|
118 |
+
def forward(self, x, c):
|
119 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1)
|
120 |
+
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa))
|
121 |
+
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
|
122 |
+
return x
|
123 |
+
|
124 |
+
|
125 |
+
class FinalLayer(nn.Module):
|
126 |
+
"""
|
127 |
+
The final layer of DiT.
|
128 |
+
"""
|
129 |
+
def __init__(self, hidden_size, patch_size, out_channels):
|
130 |
+
super().__init__()
|
131 |
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
132 |
+
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
133 |
+
self.adaLN_modulation = nn.Sequential(
|
134 |
+
nn.SiLU(),
|
135 |
+
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
|
136 |
+
)
|
137 |
+
|
138 |
+
def forward(self, x, c):
|
139 |
+
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
|
140 |
+
x = modulate(self.norm_final(x), shift, scale)
|
141 |
+
x = self.linear(x)
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
class DiT(nn.Module):
|
146 |
+
"""
|
147 |
+
Diffusion model with a Transformer backbone.
|
148 |
+
"""
|
149 |
+
def __init__(
|
150 |
+
self,
|
151 |
+
input_size=32,
|
152 |
+
patch_size=2,
|
153 |
+
in_channels=4,
|
154 |
+
hidden_size=1152,
|
155 |
+
depth=28,
|
156 |
+
num_heads=16,
|
157 |
+
mlp_ratio=4.0,
|
158 |
+
#num_classes=1000,
|
159 |
+
learn_sigma=True,
|
160 |
+
):
|
161 |
+
super().__init__()
|
162 |
+
self.learn_sigma = learn_sigma
|
163 |
+
self.in_channels = in_channels
|
164 |
+
self.out_channels = in_channels * 2 if learn_sigma else in_channels
|
165 |
+
self.patch_size = patch_size
|
166 |
+
self.num_heads = num_heads
|
167 |
+
|
168 |
+
#self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
|
169 |
+
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
|
170 |
+
self.t_embedder = TimestepEmbedder(hidden_size)
|
171 |
+
#self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob)
|
172 |
+
num_patches = self.x_embedder.num_patches
|
173 |
+
# Will use fixed sin-cos embedding:
|
174 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size), requires_grad=False)
|
175 |
+
|
176 |
+
self.blocks = nn.ModuleList([
|
177 |
+
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(depth)
|
178 |
+
])
|
179 |
+
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
|
180 |
+
self.initialize_weights()
|
181 |
+
|
182 |
+
def initialize_weights(self):
|
183 |
+
# Initialize transformer layers:
|
184 |
+
def _basic_init(module):
|
185 |
+
if isinstance(module, nn.Linear):
|
186 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
187 |
+
if module.bias is not None:
|
188 |
+
nn.init.constant_(module.bias, 0)
|
189 |
+
self.apply(_basic_init)
|
190 |
+
|
191 |
+
# Initialize (and freeze) pos_embed by sin-cos embedding:
|
192 |
+
#pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
|
193 |
+
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], self.x_embedder.grid_size)
|
194 |
+
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
|
195 |
+
|
196 |
+
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
|
197 |
+
w = self.x_embedder.proj.weight.data
|
198 |
+
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
199 |
+
nn.init.constant_(self.x_embedder.proj.bias, 0)
|
200 |
+
|
201 |
+
# Initialize label embedding table:
|
202 |
+
#nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)
|
203 |
+
|
204 |
+
# Initialize timestep embedding MLP:
|
205 |
+
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
206 |
+
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
207 |
+
|
208 |
+
# Zero-out adaLN modulation layers in DiT blocks:
|
209 |
+
for block in self.blocks:
|
210 |
+
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
211 |
+
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
212 |
+
|
213 |
+
# Zero-out output layers:
|
214 |
+
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
|
215 |
+
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
|
216 |
+
nn.init.constant_(self.final_layer.linear.weight, 0)
|
217 |
+
nn.init.constant_(self.final_layer.linear.bias, 0)
|
218 |
+
|
219 |
+
def unpatchify(self, x):
|
220 |
+
"""
|
221 |
+
x: (N, T, patch_size**2 * C)
|
222 |
+
imgs: (N, H, W, C)
|
223 |
+
"""
|
224 |
+
c = self.out_channels
|
225 |
+
p = self.x_embedder.patch_size[0]
|
226 |
+
#h = w = int(x.shape[1] ** 0.5)
|
227 |
+
h = int(self.x_embedder.grid_size[0])
|
228 |
+
w = int(self.x_embedder.grid_size[1])
|
229 |
+
#assert h * w == x.shape[1]
|
230 |
+
|
231 |
+
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
232 |
+
x = torch.einsum('nhwpqc->nchpwq', x)
|
233 |
+
#imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p))
|
234 |
+
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
|
235 |
+
return imgs
|
236 |
+
|
237 |
+
def forward(self, x, t, y):
|
238 |
+
"""
|
239 |
+
Forward pass of DiT.
|
240 |
+
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
|
241 |
+
t: (N,) tensor of diffusion timesteps
|
242 |
+
y: (N,) tensor of class labels
|
243 |
+
"""
|
244 |
+
x = self.x_embedder(x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2
|
245 |
+
t = self.t_embedder(t) # (N, D)
|
246 |
+
#y = self.y_embedder(y, self.training) # (N, D)
|
247 |
+
y = y.squeeze(dim=1)
|
248 |
+
c = t + y # (N, D)
|
249 |
+
for block in self.blocks:
|
250 |
+
x = block(x, c) # (N, T, D)
|
251 |
+
x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels)
|
252 |
+
x = self.unpatchify(x) # (N, out_channels, H, W)
|
253 |
+
return x
|
254 |
+
|
255 |
+
def forward_with_cfg(self, x, t, y, cfg_scale):
|
256 |
+
"""
|
257 |
+
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
|
258 |
+
"""
|
259 |
+
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
|
260 |
+
half = x[: len(x) // 2]
|
261 |
+
combined = torch.cat([half, half], dim=0)
|
262 |
+
model_out = self.forward(combined, t, y)
|
263 |
+
# For exact reproducibility reasons, we apply classifier-free guidance on only
|
264 |
+
# three channels by default. The standard approach to cfg applies it to all channels.
|
265 |
+
# This can be done by uncommenting the following line and commenting-out the line following that.
|
266 |
+
# eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
|
267 |
+
eps, rest = model_out[:, :3], model_out[:, 3:]
|
268 |
+
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
|
269 |
+
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
|
270 |
+
eps = torch.cat([half_eps, half_eps], dim=0)
|
271 |
+
return torch.cat([eps, rest], dim=1)
|
272 |
+
|
273 |
+
|
274 |
+
#################################################################################
|
275 |
+
# Sine/Cosine Positional Embedding Functions #
|
276 |
+
#################################################################################
|
277 |
+
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
|
278 |
+
|
279 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
|
280 |
+
"""
|
281 |
+
grid_size: int of the grid height and width
|
282 |
+
return:
|
283 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
284 |
+
"""
|
285 |
+
grid_h = np.arange(grid_size[0], dtype=np.float32)
|
286 |
+
grid_w = np.arange(grid_size[1], dtype=np.float32)
|
287 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
288 |
+
grid = np.stack(grid, axis=0)
|
289 |
+
|
290 |
+
grid = grid.reshape([2, 1, grid_size[0], grid_size[1]])
|
291 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
292 |
+
if cls_token and extra_tokens > 0:
|
293 |
+
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
|
294 |
+
return pos_embed
|
295 |
+
|
296 |
+
|
297 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
298 |
+
assert embed_dim % 2 == 0
|
299 |
+
|
300 |
+
# use half of dimensions to encode grid_h
|
301 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
302 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
303 |
+
|
304 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
305 |
+
return emb
|
306 |
+
|
307 |
+
|
308 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
309 |
+
"""
|
310 |
+
embed_dim: output dimension for each position
|
311 |
+
pos: a list of positions to be encoded: size (M,)
|
312 |
+
out: (M, D)
|
313 |
+
"""
|
314 |
+
assert embed_dim % 2 == 0
|
315 |
+
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
316 |
+
omega /= embed_dim / 2.
|
317 |
+
omega = 1. / 10000**omega # (D/2,)
|
318 |
+
|
319 |
+
pos = pos.reshape(-1) # (M,)
|
320 |
+
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
321 |
+
|
322 |
+
emb_sin = np.sin(out) # (M, D/2)
|
323 |
+
emb_cos = np.cos(out) # (M, D/2)
|
324 |
+
|
325 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
326 |
+
return emb
|
327 |
+
|
328 |
+
|
329 |
+
#################################################################################
|
330 |
+
# DiT Configs #
|
331 |
+
#################################################################################
|
332 |
+
|
333 |
+
def DiT_XL_2(**kwargs):
|
334 |
+
return DiT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs)
|
335 |
+
|
336 |
+
def DiT_XL_4(**kwargs):
|
337 |
+
return DiT(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs)
|
338 |
+
|
339 |
+
def DiT_XL_8(**kwargs):
|
340 |
+
return DiT(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs)
|
341 |
+
|
342 |
+
def DiT_L_2(**kwargs):
|
343 |
+
return DiT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs)
|
344 |
+
|
345 |
+
def DiT_L_4(**kwargs):
|
346 |
+
return DiT(depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs)
|
347 |
+
|
348 |
+
def DiT_L_8(**kwargs):
|
349 |
+
return DiT(depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs)
|
350 |
+
|
351 |
+
def DiT_B_2(**kwargs):
|
352 |
+
return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs)
|
353 |
+
|
354 |
+
def DiT_B_4(**kwargs):
|
355 |
+
return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs)
|
356 |
+
|
357 |
+
def DiT_B_8(**kwargs):
|
358 |
+
return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)
|
359 |
+
|
360 |
+
def DiT_S_2(**kwargs):
|
361 |
+
return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs)
|
362 |
+
|
363 |
+
def DiT_S_4(**kwargs):
|
364 |
+
return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs)
|
365 |
+
|
366 |
+
def DiT_S_8(**kwargs):
|
367 |
+
return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs)
|
368 |
+
|
369 |
+
|
370 |
+
DiT_models = {
|
371 |
+
'DiT-XL/2': DiT_XL_2, 'DiT-XL/4': DiT_XL_4, 'DiT-XL/8': DiT_XL_8,
|
372 |
+
'DiT-L/2': DiT_L_2, 'DiT-L/4': DiT_L_4, 'DiT-L/8': DiT_L_8,
|
373 |
+
'DiT-B/2': DiT_B_2, 'DiT-B/4': DiT_B_4, 'DiT-B/8': DiT_B_8,
|
374 |
+
'DiT-S/2': DiT_S_2, 'DiT-S/4': DiT_S_4, 'DiT-S/8': DiT_S_8,
|
375 |
+
}
|
requirement.txt
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==2.1.0
|
2 |
+
aiohttp==3.10.0
|
3 |
+
attrs==23.2.0
|
4 |
+
audioread==3.0.1
|
5 |
+
cffi==1.16.0
|
6 |
+
datasets==2.20.0
|
7 |
+
einops==0.8.0
|
8 |
+
fsspec==2024.5.0
|
9 |
+
GitPython==3.1.43
|
10 |
+
h5py==3.11.0
|
11 |
+
huggingface-hub==0.24.5
|
12 |
+
joblib==1.4.2
|
13 |
+
librosa==0.10.2.post1
|
14 |
+
numpy==1.26.4
|
15 |
+
pandas==2.2.2
|
16 |
+
pydub==0.25.1
|
17 |
+
scipy==1.13.1
|
18 |
+
sentence-transformers==3.1.0
|
19 |
+
six==1.16.0
|
20 |
+
soundfile==0.12.1
|
21 |
+
timm==0.9.2
|
22 |
+
tqdm==4.66.4
|
23 |
+
torch==2.0.0
|
24 |
+
torchmetrics==1.4.1
|
25 |
+
transformers==4.43.3
|
26 |
+
tensorboard
|
sample.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import h5py
|
4 |
+
import random
|
5 |
+
import numpy as np
|
6 |
+
import soundfile as sf
|
7 |
+
from models import DiT
|
8 |
+
from diffusion import create_diffusion
|
9 |
+
from tqdm import tqdm
|
10 |
+
import sys
|
11 |
+
sys.path.append('./tools/bigvgan_v2_22khz_80band_256x')
|
12 |
+
from bigvgan import BigVGAN
|
13 |
+
from torch import nn
|
14 |
+
import torch.nn.functional as F
|
15 |
+
import argparse
|
16 |
+
|
17 |
+
device = 'cuda:1' if torch.cuda.is_available() else 'cpu'
|
18 |
+
|
19 |
+
class MelToAudio_bigvgan(nn.Module):
|
20 |
+
def __init__(self):
|
21 |
+
super().__init__()
|
22 |
+
self.vocoder = BigVGAN.from_pretrained('/home/zheqid/workspace/music_dit/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
|
23 |
+
self.vocoder.remove_weight_norm()
|
24 |
+
|
25 |
+
def __call__(self, z):
|
26 |
+
x = self.mel_to_audio(z)
|
27 |
+
return x
|
28 |
+
|
29 |
+
def mel_to_audio(self, x):
|
30 |
+
with torch.no_grad():
|
31 |
+
self.vocoder.eval()
|
32 |
+
y = self.vocoder(x[:, :, :])
|
33 |
+
y = y.squeeze(0)
|
34 |
+
return y
|
35 |
+
|
36 |
+
vocoder = MelToAudio_bigvgan().to(device)
|
37 |
+
|
38 |
+
def load_trained_model(checkpoint_path):
|
39 |
+
model = DiT(
|
40 |
+
input_size=(80, 800),
|
41 |
+
patch_size=8,
|
42 |
+
in_channels=1,
|
43 |
+
hidden_size=384,
|
44 |
+
depth=12,
|
45 |
+
num_heads=6,
|
46 |
+
)
|
47 |
+
model.to(device)
|
48 |
+
checkpoint = torch.load(checkpoint_path)
|
49 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
50 |
+
model.eval()
|
51 |
+
return model
|
52 |
+
|
53 |
+
def load_all_meta_and_mel_from_h5(h5_file):
|
54 |
+
with h5py.File(h5_file, 'r') as f:
|
55 |
+
keys = list(f.keys())
|
56 |
+
for key in keys:
|
57 |
+
meta_latent = torch.FloatTensor(f[key]['meta'][:]).to(device)
|
58 |
+
mel = torch.FloatTensor(f[key]['mel'][:]).to(device)
|
59 |
+
yield key, meta_latent, mel
|
60 |
+
|
61 |
+
def extract_random_mel_segment(mel, segment_length=800):
|
62 |
+
total_length = mel.shape[2]
|
63 |
+
if total_length > segment_length:
|
64 |
+
start = np.random.randint(0, total_length - segment_length)
|
65 |
+
mel_segment = mel[:, :, start:start + segment_length]
|
66 |
+
else:
|
67 |
+
padding = segment_length - total_length
|
68 |
+
mel_segment = F.pad(mel, (0, padding), mode='constant', value=0)
|
69 |
+
|
70 |
+
mel_segment = (mel_segment + 10) / 20
|
71 |
+
return mel_segment
|
72 |
+
|
73 |
+
def infer_and_generate_audio(model, diffusion, meta_latent):
|
74 |
+
latent_size = (80, 800)
|
75 |
+
z = torch.randn(1, 1, latent_size[0], latent_size[1], device=device)
|
76 |
+
model_kwargs = dict(y=meta_latent)
|
77 |
+
|
78 |
+
with torch.no_grad():
|
79 |
+
samples = diffusion.p_sample_loop(
|
80 |
+
model.forward, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device
|
81 |
+
)
|
82 |
+
|
83 |
+
return samples
|
84 |
+
|
85 |
+
def save_audio(mel, vocoder, output_path, sample_rate=24000):
|
86 |
+
with torch.no_grad():
|
87 |
+
if mel.dim() == 4 and mel.shape[1] == 1:
|
88 |
+
mel = mel[0, 0, :, :]
|
89 |
+
elif mel.dim() == 3 and mel.shape[0] == 1:
|
90 |
+
mel = mel[0]
|
91 |
+
else:
|
92 |
+
raise ValueError(f"Unexpected mel shape: {mel.shape}")
|
93 |
+
|
94 |
+
mel = mel.unsqueeze(0)
|
95 |
+
wav = vocoder(mel * 20 - 10).cpu().numpy()
|
96 |
+
|
97 |
+
sf.write(output_path, wav[0], samplerate=sample_rate)
|
98 |
+
print(f"Saved audio to: {output_path}")
|
99 |
+
|
100 |
+
def main():
|
101 |
+
parser = argparse.ArgumentParser(description='Generate audio using DiT and BigVGAN')
|
102 |
+
parser.add_argument('--checkpoint', type=str, required=True, help='Path to model checkpoint')
|
103 |
+
parser.add_argument('--h5_file', type=str, required=True, help='Path to input H5 file')
|
104 |
+
parser.add_argument('--output_gt_dir', type=str, required=True, help='Directory to save ground truth audio')
|
105 |
+
parser.add_argument('--output_gen_dir', type=str, required=True, help='Directory to save generated audio')
|
106 |
+
parser.add_argument('--segment_length', type=int, default=800, help='Segment length for mel slices (default: 800)')
|
107 |
+
parser.add_argument('--sample_rate', type=int, default=22050, help='Sample rate for output audio (default: 24000)')
|
108 |
+
args = parser.parse_args()
|
109 |
+
|
110 |
+
model = load_trained_model(args.checkpoint)
|
111 |
+
diffusion = create_diffusion(timestep_respacing="")
|
112 |
+
|
113 |
+
for i, (key, meta_latent, mel) in enumerate(tqdm(load_all_meta_and_mel_from_h5(args.h5_file))):
|
114 |
+
mel_segment = extract_random_mel_segment(mel, segment_length=args.segment_length)
|
115 |
+
|
116 |
+
ground_truth_wav_path = os.path.join(args.output_gt_dir, f"{key}.wav")
|
117 |
+
save_audio(mel_segment, vocoder, ground_truth_wav_path, sample_rate=args.sample_rate)
|
118 |
+
|
119 |
+
generated_mel = infer_and_generate_audio(model, diffusion, meta_latent)
|
120 |
+
|
121 |
+
output_wav_path = os.path.join(args.output_gen_dir, f"{key}.wav")
|
122 |
+
save_audio(generated_mel, vocoder, output_wav_path, sample_rate=args.sample_rate)
|
123 |
+
|
124 |
+
if __name__ == "__main__":
|
125 |
+
main()
|
126 |
+
|
127 |
+
### how to use
|
128 |
+
'''
|
129 |
+
python sample.py --checkpoint ./gtzan-ck/model_epoch_20000.pt \
|
130 |
+
--h5_file ./dataset/gtzan_test.h5 \
|
131 |
+
--output_gt_dir ./sample/gn \
|
132 |
+
--output_gen_dir ./sample/gt \
|
133 |
+
--segment_length 800 \
|
134 |
+
--sample_rate 22050
|
135 |
+
'''
|
sample/gn/blues_blues.00000.mp3
ADDED
Binary file (58.2 kB). View file
|
|
sample/gn/blues_blues.00001.mp3
ADDED
Binary file (57.9 kB). View file
|
|
sample/gn/blues_blues.00002.mp3
ADDED
Binary file (56.7 kB). View file
|
|
sample/gn/blues_blues.00003.mp3
ADDED
Binary file (55.7 kB). View file
|
|
sample/gn/blues_blues.00004.mp3
ADDED
Binary file (53.4 kB). View file
|
|
sample/gn/blues_blues.00005.mp3
ADDED
Binary file (60.2 kB). View file
|
|
sample/gn/blues_blues.00006.mp3
ADDED
Binary file (53.8 kB). View file
|
|
sample/gn/blues_blues.00007.mp3
ADDED
Binary file (55 kB). View file
|
|
sample/gn/blues_blues.00008.mp3
ADDED
Binary file (54.8 kB). View file
|
|
sample/gn/blues_blues.00009.mp3
ADDED
Binary file (54.1 kB). View file
|
|
sample/gt/blues_blues.00000.mp3
ADDED
Binary file (54.8 kB). View file
|
|
sample/gt/blues_blues.00001.mp3
ADDED
Binary file (55.4 kB). View file
|
|
sample/gt/blues_blues.00002.mp3
ADDED
Binary file (63.9 kB). View file
|
|
sample/gt/blues_blues.00003.mp3
ADDED
Binary file (57.2 kB). View file
|
|
sample/gt/blues_blues.00004.mp3
ADDED
Binary file (59.8 kB). View file
|
|
sample/gt/blues_blues.00005.mp3
ADDED
Binary file (58.2 kB). View file
|
|
sample/gt/blues_blues.00006.mp3
ADDED
Binary file (60.4 kB). View file
|
|
sample/gt/blues_blues.00007.mp3
ADDED
Binary file (59.6 kB). View file
|
|
sample/gt/blues_blues.00008.mp3
ADDED
Binary file (56.6 kB). View file
|
|
sample/gt/blues_blues.00009.mp3
ADDED
Binary file (52.6 kB). View file
|
|
tools/bigvgan_v2_22khz_80band_256x
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 633ff708ed5b74903e86ff1298cf4a98e921c513
|
tools/gtzan2h5.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import h5py
|
4 |
+
import random
|
5 |
+
import numpy as np
|
6 |
+
from tqdm import tqdm
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
import librosa
|
9 |
+
from bigvgan_v2_22khz_80band_256x.meldataset import get_mel_spectrogram
|
10 |
+
from types import SimpleNamespace
|
11 |
+
from torch import nn
|
12 |
+
from einops import rearrange
|
13 |
+
import json
|
14 |
+
import argparse
|
15 |
+
|
16 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
17 |
+
|
18 |
+
# Load SentenceTransformer model
|
19 |
+
sentence_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
20 |
+
|
21 |
+
class AudioToMel_bigvgan(nn.Module):
|
22 |
+
def __init__(self, config_path):
|
23 |
+
super().__init__()
|
24 |
+
|
25 |
+
# Load configuration file
|
26 |
+
with open(config_path, 'r') as f:
|
27 |
+
self.h = json.load(f, object_hook=lambda d: SimpleNamespace(**d))
|
28 |
+
|
29 |
+
def __call__(self, audio):
|
30 |
+
x = self.audio_to_mel(audio) # Extract mel spectrogram
|
31 |
+
return x
|
32 |
+
|
33 |
+
def audio_to_mel(self, audio):
|
34 |
+
# Convert to mono channel
|
35 |
+
audio = audio[:, 0, :] # Assuming input is (b, c, t), take first channel
|
36 |
+
audio = torch.tensor(audio)
|
37 |
+
|
38 |
+
# Extract mel spectrogram
|
39 |
+
x = get_mel_spectrogram(
|
40 |
+
wav=audio[:, :],
|
41 |
+
h=self.h
|
42 |
+
) # Shape: (b, f, t)
|
43 |
+
|
44 |
+
return x
|
45 |
+
|
46 |
+
# Initialize BigVGAN Mel extraction model
|
47 |
+
audio_to_mel_model = None # Placeholder, will be initialized later
|
48 |
+
|
49 |
+
def extract_mel_features(audio_path, sr=24000):
|
50 |
+
"""
|
51 |
+
Extract Mel features using BigVGAN model, with normalization.
|
52 |
+
:param audio_path: Path to the audio file
|
53 |
+
:param sr: Sampling rate (default 24000)
|
54 |
+
:return: Mel spectrogram
|
55 |
+
"""
|
56 |
+
# Load and normalize audio
|
57 |
+
wav, _ = librosa.load(audio_path, sr=sr)
|
58 |
+
max_val = np.max(np.abs(wav))
|
59 |
+
if max_val > 1.0:
|
60 |
+
wav = wav / max_val
|
61 |
+
|
62 |
+
wav_tensor = torch.FloatTensor(wav).unsqueeze(0).unsqueeze(0).to(device) # Shape: (1, 1, T)
|
63 |
+
|
64 |
+
# Extract Mel spectrogram
|
65 |
+
mel_spectrogram = audio_to_mel_model(wav_tensor).cpu().numpy()
|
66 |
+
return mel_spectrogram
|
67 |
+
|
68 |
+
def get_embedding_from_folder_name(folder_name):
|
69 |
+
"""
|
70 |
+
Convert folder name into embedding using SentenceTransformer.
|
71 |
+
:param folder_name: Name of the folder
|
72 |
+
:return: Corresponding embedding
|
73 |
+
"""
|
74 |
+
try:
|
75 |
+
embedding = sentence_model.encode([folder_name])
|
76 |
+
return embedding
|
77 |
+
except Exception as e:
|
78 |
+
print(f"Error encoding label for {folder_name}: {e}")
|
79 |
+
return None
|
80 |
+
|
81 |
+
def process_single_file(file_info):
|
82 |
+
"""
|
83 |
+
Process a single audio file and return its key, mel features, and meta embedding.
|
84 |
+
:param file_info: (root_dir, audio_path) tuple
|
85 |
+
:return: (key, mel_features, embedding)
|
86 |
+
"""
|
87 |
+
root_dir, audio_path = file_info
|
88 |
+
try:
|
89 |
+
# Get file and folder names
|
90 |
+
file_name_with_ext = os.path.basename(audio_path)
|
91 |
+
folder_name = os.path.basename(os.path.dirname(audio_path))
|
92 |
+
|
93 |
+
# Extract Mel features
|
94 |
+
mel_features = extract_mel_features(audio_path)
|
95 |
+
|
96 |
+
# Get embedding from folder name
|
97 |
+
embedding = get_embedding_from_folder_name(folder_name)
|
98 |
+
|
99 |
+
if embedding is None:
|
100 |
+
return None, None, None
|
101 |
+
|
102 |
+
key = os.path.relpath(audio_path, root_dir).replace('/', '_').replace('\\', '_')
|
103 |
+
return key, mel_features, embedding
|
104 |
+
except Exception as e:
|
105 |
+
print(f"Error processing {audio_path}: {e}")
|
106 |
+
return None, None, None
|
107 |
+
|
108 |
+
def process_and_save_files(audio_files, output_h5_file):
|
109 |
+
"""
|
110 |
+
Process audio files and save Mel features and meta embeddings to an HDF5 file.
|
111 |
+
:param audio_files: List of audio file paths
|
112 |
+
:param output_h5_file: Path to the HDF5 output file
|
113 |
+
"""
|
114 |
+
with h5py.File(output_h5_file, 'w') as h5f:
|
115 |
+
for file_info in tqdm(audio_files, desc="Processing audio files"):
|
116 |
+
key, mel_features, embedding = process_single_file(file_info)
|
117 |
+
if key is not None and mel_features is not None and embedding is not None:
|
118 |
+
group = h5f.create_group(key)
|
119 |
+
group.create_dataset('mel', data=mel_features)
|
120 |
+
group.create_dataset('meta', data=embedding)
|
121 |
+
|
122 |
+
def process_audio_files(root_dir, output_h5_file):
|
123 |
+
"""
|
124 |
+
Walk through a directory and process all audio files, saving them to an HDF5 file.
|
125 |
+
:param root_dir: Root directory containing audio files
|
126 |
+
:param output_h5_file: Path to the HDF5 output file
|
127 |
+
"""
|
128 |
+
audio_files = []
|
129 |
+
|
130 |
+
for subdir, _, files in os.walk(root_dir):
|
131 |
+
for file in files:
|
132 |
+
if file.endswith('.wav') or file.endswith('.mp3') or file.endswith('.flac'):
|
133 |
+
audio_path = os.path.join(subdir, file)
|
134 |
+
audio_files.append((root_dir, audio_path))
|
135 |
+
|
136 |
+
random.shuffle(audio_files)
|
137 |
+
|
138 |
+
print(f"Processing {len(audio_files)} files...")
|
139 |
+
process_and_save_files(audio_files, output_h5_file)
|
140 |
+
|
141 |
+
if __name__ == "__main__":
|
142 |
+
# Argument parser for command line arguments
|
143 |
+
parser = argparse.ArgumentParser(description="Process audio files and extract mel features.")
|
144 |
+
parser.add_argument('--root_dir', type=str, required=True, help='Root directory of the audio files.')
|
145 |
+
parser.add_argument('--output_h5_file', type=str, required=True, help='Output HDF5 file path.')
|
146 |
+
parser.add_argument('--config_path', type=str, required=True, help='Path to the BigVGAN config.json file.')
|
147 |
+
parser.add_argument('--sr', type=int, default=22050, help='Sampling rate (default: 24000).')
|
148 |
+
|
149 |
+
args = parser.parse_args()
|
150 |
+
|
151 |
+
# Initialize the BigVGAN Mel extraction model
|
152 |
+
audio_to_mel_model = AudioToMel_bigvgan(args.config_path).to(device)
|
153 |
+
|
154 |
+
# Process audio files
|
155 |
+
process_audio_files(args.root_dir, args.output_h5_file)
|
156 |
+
|
157 |
+
print(f"Processing completed. H5 file saved at: {args.output_h5_file}")
|
158 |
+
|
159 |
+
### how to use
|
160 |
+
# python process_audio.py --root_dir /path/to/audio/files --output_h5_file /path/to/output.h5 --config_path --config_path bigvgan_v2_22khz_80band_256x/config.json --sr 22050
|
tools/gtzan_split.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import argparse
|
4 |
+
from pydub import AudioSegment
|
5 |
+
|
6 |
+
class GTZAN:
|
7 |
+
def __init__(self, root_dir, output_dir, labels):
|
8 |
+
"""
|
9 |
+
Args:
|
10 |
+
root_dir (str): Root directory of the dataset.
|
11 |
+
output_dir (str): Output directory to save converted MP3 files.
|
12 |
+
labels (list): List of genres in the dataset.
|
13 |
+
"""
|
14 |
+
self.root_dir = root_dir
|
15 |
+
self.output_dir = output_dir
|
16 |
+
self.labels = labels
|
17 |
+
|
18 |
+
# Create output directory structure for MP3 files
|
19 |
+
self.create_output_dirs()
|
20 |
+
|
21 |
+
def create_output_dirs(self):
|
22 |
+
"""Create directories to store train and test audio files"""
|
23 |
+
for split in ['train', 'test']:
|
24 |
+
for genre in self.labels:
|
25 |
+
genre_dir = os.path.join(self.output_dir, split, genre)
|
26 |
+
os.makedirs(genre_dir, exist_ok=True)
|
27 |
+
|
28 |
+
def split_train_test(self, audio_names, test_fold):
|
29 |
+
"""
|
30 |
+
Split the dataset into train and test sets based on test_fold.
|
31 |
+
E.g., test_ids = [30, 31, 32, ..., 39].
|
32 |
+
"""
|
33 |
+
test_audio_names = []
|
34 |
+
train_audio_names = []
|
35 |
+
|
36 |
+
test_ids = range(test_fold * 10, (test_fold + 1) * 10)
|
37 |
+
|
38 |
+
for audio_name in audio_names:
|
39 |
+
# Extract the numeric ID from the audio file name
|
40 |
+
audio_id = int(re.search(r'\d+', audio_name).group())
|
41 |
+
|
42 |
+
if audio_id in test_ids:
|
43 |
+
test_audio_names.append(audio_name)
|
44 |
+
else:
|
45 |
+
train_audio_names.append(audio_name)
|
46 |
+
|
47 |
+
return train_audio_names, test_audio_names
|
48 |
+
|
49 |
+
def convert_and_save(self, file_path, target_path):
|
50 |
+
"""Convert AU format to MP3 and save to target path"""
|
51 |
+
audio = AudioSegment.from_file(file_path, format="au")
|
52 |
+
audio.export(target_path, format="mp3")
|
53 |
+
print(f"Converted and saved {target_path}")
|
54 |
+
|
55 |
+
def process_genre(self, genre, test_fold):
|
56 |
+
"""Process a single genre, split the dataset, and convert formats"""
|
57 |
+
genre_path = os.path.join(self.root_dir, genre)
|
58 |
+
audio_files = os.listdir(genre_path)
|
59 |
+
|
60 |
+
# Split the dataset
|
61 |
+
train_files, test_files = self.split_train_test(audio_files, test_fold)
|
62 |
+
|
63 |
+
# Process training set
|
64 |
+
for audio_name in train_files:
|
65 |
+
file_path = os.path.join(genre_path, audio_name)
|
66 |
+
target_path = os.path.join(self.output_dir, 'train', genre, audio_name.replace('.au', '.mp3'))
|
67 |
+
self.convert_and_save(file_path, target_path)
|
68 |
+
|
69 |
+
# Process test set
|
70 |
+
for audio_name in test_files:
|
71 |
+
file_path = os.path.join(genre_path, audio_name)
|
72 |
+
target_path = os.path.join(self.output_dir, 'test', genre, audio_name.replace('.au', '.mp3'))
|
73 |
+
self.convert_and_save(file_path, target_path)
|
74 |
+
|
75 |
+
def process_dataset(self):
|
76 |
+
"""Process the entire GTZAN dataset and split it into train and test sets"""
|
77 |
+
for idx, genre in enumerate(self.labels):
|
78 |
+
print(f"Processing genre: {genre}...")
|
79 |
+
test_fold = idx % 10 # Each genre has a different test_fold
|
80 |
+
self.process_genre(genre, test_fold)
|
81 |
+
|
82 |
+
|
83 |
+
if __name__ == "__main__":
|
84 |
+
# Define argument parser
|
85 |
+
parser = argparse.ArgumentParser(description="GTZAN Dataset Converter")
|
86 |
+
parser.add_argument('--root_dir', type=str, required=True, help='Root directory of the GTZAN dataset')
|
87 |
+
parser.add_argument('--output_dir', type=str, required=True, help='Directory to save the converted MP3 files')
|
88 |
+
args = parser.parse_args()
|
89 |
+
|
90 |
+
# Example genre labels in the GTZAN dataset
|
91 |
+
labels = ["blues", "classical", "country", "disco", "hiphop", "jazz", "metal", "pop", "reggae", "rock"]
|
92 |
+
|
93 |
+
# Initialize the GTZAN processor
|
94 |
+
gtzan = GTZAN(args.root_dir, args.output_dir, labels)
|
95 |
+
gtzan.process_dataset()
|
96 |
+
|
97 |
+
### how to use
|
98 |
+
# python gtzan_converter.py --root_dir /path/to/gtzan/genres --output_dir /path/to/output/directory
|
train.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import h5py
|
3 |
+
import torch
|
4 |
+
import random
|
5 |
+
import yaml
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch.utils.data import Dataset, DataLoader
|
8 |
+
from tqdm import tqdm
|
9 |
+
from diffusion import create_diffusion
|
10 |
+
from models import DiT
|
11 |
+
import torch.optim as optim
|
12 |
+
from torch.utils.tensorboard import SummaryWriter # TensorBoard
|
13 |
+
|
14 |
+
# Load hyperparameters from YAML file
|
15 |
+
with open('config/train.yaml', 'r') as file:
|
16 |
+
config = yaml.safe_load(file)
|
17 |
+
|
18 |
+
# Create TensorBoard writer
|
19 |
+
writer = SummaryWriter()
|
20 |
+
|
21 |
+
class MelMetaDataset(Dataset):
|
22 |
+
def __init__(self, h5_file, mel_frames):
|
23 |
+
self.h5_file = h5_file
|
24 |
+
self.mel_frames = mel_frames
|
25 |
+
with h5py.File(h5_file, 'r') as f:
|
26 |
+
self.keys = list(f.keys())
|
27 |
+
|
28 |
+
def __len__(self):
|
29 |
+
return len(self.keys)
|
30 |
+
|
31 |
+
def pad_mel(self, mel_segment, total_frames):
|
32 |
+
if total_frames < self.mel_frames:
|
33 |
+
padding_frames = self.mel_frames - total_frames
|
34 |
+
mel_segment = F.pad(mel_segment, (0, padding_frames), mode='constant', value=0)
|
35 |
+
return mel_segment
|
36 |
+
|
37 |
+
def __getitem__(self, idx):
|
38 |
+
key = self.keys[idx]
|
39 |
+
with h5py.File(self.h5_file, 'r') as f:
|
40 |
+
mel = torch.FloatTensor(f[key]['mel'][:])
|
41 |
+
meta_latent = torch.FloatTensor(f[key]['meta'][:])
|
42 |
+
|
43 |
+
total_frames = mel.shape[2]
|
44 |
+
if total_frames > self.mel_frames:
|
45 |
+
start_frame = random.randint(0, total_frames - self.mel_frames)
|
46 |
+
mel_segment = mel[:, :, start_frame:start_frame + self.mel_frames]
|
47 |
+
else:
|
48 |
+
mel_segment = self.pad_mel(mel, total_frames)
|
49 |
+
mel_segment = (mel_segment + 10) / 20
|
50 |
+
return mel_segment, meta_latent
|
51 |
+
|
52 |
+
# Dataset & DataLoader
|
53 |
+
dataset = MelMetaDataset(config['h5_file_path'], mel_frames=config['mel_frames'])
|
54 |
+
dataloader = DataLoader(dataset, batch_size=config['batch_size'], shuffle=True)
|
55 |
+
|
56 |
+
# Model and optimizer
|
57 |
+
device = config['device'] if torch.cuda.is_available() else "cpu"
|
58 |
+
model = DiT(
|
59 |
+
input_size=tuple(config['input_size']),
|
60 |
+
patch_size=config['patch_size'],
|
61 |
+
in_channels=config['in_channels'],
|
62 |
+
hidden_size=config['hidden_size'],
|
63 |
+
depth=config['depth'],
|
64 |
+
num_heads=config['num_heads'],
|
65 |
+
)
|
66 |
+
model.to(device)
|
67 |
+
|
68 |
+
# Create diffusion model
|
69 |
+
diffusion = create_diffusion(timestep_respacing="")
|
70 |
+
|
71 |
+
# Optimizer
|
72 |
+
optimizer = optim.AdamW(model.parameters(), lr=config['lr'])
|
73 |
+
|
74 |
+
# Create directory to save model checkpoints
|
75 |
+
os.makedirs(config['checkpoint_dir'], exist_ok=True)
|
76 |
+
|
77 |
+
# Training function
|
78 |
+
def train_model(model, dataloader, optimizer, diffusion, num_epochs, sample_interval):
|
79 |
+
model.train()
|
80 |
+
for epoch in range(num_epochs):
|
81 |
+
total_loss = 0.0
|
82 |
+
for step, (mel_segment, meta_latent) in enumerate(tqdm(dataloader, desc=f"Epoch {epoch + 1}/{num_epochs}")):
|
83 |
+
mel_segment = mel_segment.to(device)
|
84 |
+
meta_latent = meta_latent.to(device)
|
85 |
+
t = torch.randint(0, diffusion.num_timesteps, (mel_segment.shape[0],), device=device)
|
86 |
+
model_kwargs = dict(y=meta_latent)
|
87 |
+
loss_dict = diffusion.training_losses(model, mel_segment, t, model_kwargs)
|
88 |
+
loss = loss_dict["loss"].mean()
|
89 |
+
|
90 |
+
optimizer.zero_grad()
|
91 |
+
loss.backward()
|
92 |
+
optimizer.step()
|
93 |
+
|
94 |
+
total_loss += loss.item()
|
95 |
+
|
96 |
+
avg_loss = total_loss / len(dataloader)
|
97 |
+
print(f"Epoch {epoch + 1}/{num_epochs}: Average Loss: {avg_loss:.4f}")
|
98 |
+
writer.add_scalar('Loss/epoch', avg_loss, epoch + 1)
|
99 |
+
|
100 |
+
if (epoch + 1) % sample_interval == 0:
|
101 |
+
checkpoint = {
|
102 |
+
'epoch': epoch + 1,
|
103 |
+
'model_state_dict': model.state_dict(),
|
104 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
105 |
+
}
|
106 |
+
checkpoint_path = f"{config['checkpoint_dir']}/model_epoch_{epoch + 1}.pt"
|
107 |
+
torch.save(checkpoint, checkpoint_path)
|
108 |
+
print(f"Model checkpoint saved at epoch {epoch + 1}")
|
109 |
+
|
110 |
+
# Start training
|
111 |
+
train_model(model, dataloader, optimizer, diffusion, num_epochs=config['num_epochs'], sample_interval=config['sample_interval'])
|
112 |
+
|
113 |
+
# Close TensorBoard writer
|
114 |
+
writer.close()
|