Commit
·
8e94da2
1
Parent(s):
39aca5e
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1559.04 +/- 71.15
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4049e9fa496821bf573448fa848e1a7e06052f1cfa64534cd931f413fda49cbb
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f21c0141310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f21c01413a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f21c0141430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f21c01414c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f21c0141550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f21c01415e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f21c0141670>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f21c0141700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f21c0141790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f21c0141820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21c01418b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f21c0141940>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f21c0154ed0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1676721843886259142,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOcxSr93w5W/lB1Dv6vwzz6p8FE/UHPQPosGVT8ijjY/tdy2v0oC3Dv8q3S/0s/APG34yj/YBW8/RzATv/0miD9pkOM+IgA7QJbPVT/MBZC/ZOXRvsuBbj9Yq1a/1oUzPzGRsb/+2tA+FKLuv+8hgD/tzDe/03Y8v/o+1zxIkh+/Eb4JwI3NPD+Choy/d/xWP5fKpL/0rok994lpv78Rjr1iwx2+MvA5v0+UOj/ntKE8duwYPzHSg78U1IK/fIBAv+19Cb9vCMA+LYWJPhyoFD7kiTg//trQPr1QCT80vH+/xZkzvo+LVL+8LNi9S9OrP4m7nD+S/Ga+JIGrPclQRD9XTBc9tOT+v9eVh78e3YW8WVUyP+R+/rz1Rwm/KzQ8P+4VLD8NDdo/scf1PgE2Gj+F8Za/N4RUvw/AH73JYyQ+MZGxv/7a0D4Uou6/NLx/v9hTFb9e8zW/M6VyPf2JTD/k8STAPh7fPsRJS7/B1Rs+WWKJv0jXNj8sUKS+IrtBP3MCWz//8LC/cRo1PwyhYUA6kYE/Q/zsvip0CL/33J3Ad+05v8LXuT4WQRA/ql7cP+SJOD/+2tA+FKLuv+8hgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABI1Wu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3S0SPgAAAAB4FuG/AAAAAFN07T0AAAAAJ4LbPwAAAAB6bRC8AAAAABNf/D8AAAAAwHH7PQAAAABZxPm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMYbDNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAo70z0AAAAA+VHzvwAAAACQ1g4+AAAAANy76D8AAAAAEJdHPAAAAAAncfQ/AAAAANkNgLsAAAAA8Tb0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKxMkzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICMx3W9AAAAAJXv9b8AAAAAzqHXvQAAAACwptk/AAAAALOZJLwAAAAA9mLbPwAAAADtas29AAAAAPNm6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADv5p62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0rdLPQAAAABX6/O/AAAAAPomlz0AAAAAtcDrPwAAAADuZwu+AAAAACb88T8AAAAAuiCvPQAAAAB5Reu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZyGuxKQJaMAWyUTegDjAF0lEdAqgmGsPrfL3V9lChoBkdAlehINZvDQGgHTegDaAhHQKoLj9KEnLJ1fZQoaAZHQJUXDQ8fV7RoB03oA2gIR0CqDqS8zyjIdX2UKGgGR0CVZfAQg9vCaAdN6ANoCEdAqg80+otL+XV9lChoBkdAlcBF6Z6Uq2gHTegDaAhHQKoXUJvYODt1fZQoaAZHQJYwEphF3INoB03oA2gIR0CqGJrLIPsidX2UKGgGR0CVtHtYB/7SaAdN6ANoCEdAqhqeycCo0nV9lChoBkdAlZaG7OE/S2gHTegDaAhHQKobLXNke6t1fZQoaAZHQJfdDek56t1oB03oA2gIR0CqI4+3x4IKdX2UKGgGR0CWAMe6I3zdaAdN6ANoCEdAqiVoZVGTcXV9lChoBkdAlhtRL5AQhGgHTegDaAhHQKookWJrLyN1fZQoaAZHQJTsf7k4m1JoB03oA2gIR0CqKXFar3j/dX2UKGgGR0CVkQLfDUExaAdN6ANoCEdAqjJh3qzJIXV9lChoBkdAl2JlVo6CDmgHTegDaAhHQKozqtthuwZ1fZQoaAZHQJXSoMMI/qxoB03oA2gIR0CqNcFhgE2YdX2UKGgGR0CXqhZrHlwMaAdN6ANoCEdAqjZWBJ7LMnV9lChoBkdAmJt1xCIDYGgHTegDaAhHQKo+YzWPLgZ1fZQoaAZHQJYO4gQpWmxoB03oA2gIR0CqP8p6po9LdX2UKGgGR0CUuikmhM8HaAdN6ANoCEdAqkLZPO6d2HV9lChoBkdAk8E5/gBLf2gHTegDaAhHQKpDuTKT0QN1fZQoaAZHQJNnSaw2VFBoB03oA2gIR0CqTfkF4cFRdX2UKGgGR0CQY59W6shgaAdN6ANoCEdAqk9IcFQl8nV9lChoBkdAlGUnzcynDWgHTegDaAhHQKpRWrbxmTV1fZQoaAZHQJBeSgsbvPVoB03oA2gIR0CqUenAIppfdX2UKGgGR0CSnUBRyfcvaAdN6ANoCEdAqlpHykKu0XV9lChoBkdAk2gACGN70GgHTegDaAhHQKpbkzQ/oq11fZQoaAZHQJLVPRfF72NoB03oA2gIR0CqXgc2Jiy6dX2UKGgGR0CTBet/nW8RaAdN6ANoCEdAql7ZSm65G3V9lChoBkdAk55rGza9K2gHTegDaAhHQKppnWV/tpp1fZQoaAZHQJRP/MV1wHZoB03oA2gIR0Cqat1Z1V5sdX2UKGgGR0CTB8Pn0TURaAdN6ANoCEdAqmzvWYnfEXV9lChoBkdAk1wrKzRhMWgHTegDaAhHQKpths1KoQ51fZQoaAZHQI1WTPdEb5xoB03oA2gIR0CqdbXuE25ydX2UKGgGR0CUIV+fh/AkaAdN6ANoCEdAqnclJWeYlnV9lChoBkdAjiHIP9UCJWgHTegDaAhHQKp5MaXrt3R1fZQoaAZHQJRR7YxtYSxoB03oA2gIR0CqecSnk1dgdX2UKGgGR0CT4IeEIw/QaAdN6ANoCEdAqoU1/YraunV9lChoBkdAlSFalLvkR2gHTegDaAhHQKqGhdMTN+t1fZQoaAZHQJRqk/FBIFxoB03oA2gIR0CqiJbQb+98dX2UKGgGR0CQbcg6EJ0GaAdN6ANoCEdAqokmIInjQ3V9lChoBkdAkuIgqqfe12gHTegDaAhHQKqRN2WY4Q11fZQoaAZHQJPZqhqTKT1oB03oA2gIR0CqkoO5SWJKdX2UKGgGR0CUjfbpeNT+aAdN6ANoCEdAqpSR7gKnenV9lChoBkdAlZRhe1KGtmgHTegDaAhHQKqVJd7fHgh1fZQoaAZHQJVOtXDFZPloB03oA2gIR0CqoGrv9cbBdX2UKGgGR0CVJp4EfT1DaAdN6ANoCEdAqqHBM10knnV9lChoBkdAlHSX2ZiNKmgHTegDaAhHQKqj1VI7Njd1fZQoaAZHQJVT3wnYxtZoB03oA2gIR0CqpGMVUModdX2UKGgGR0CUFoMRpUPyaAdN6ANoCEdAqqx4Kc/dI3V9lChoBkdAkmLMXFcY7GgHTegDaAhHQKqtxollbvB1fZQoaAZHQJQ4V98Z1mtoB03oA2gIR0Cqr9BD5TIedX2UKGgGR0CUSTVcD8tPaAdN6ANoCEdAqrBavLX+VHV9lChoBkdAlxh1KwpvxmgHTegDaAhHQKq6bn7pFCt1fZQoaAZHQJPV1ggHNX5oB03oA2gIR0CqvGt29tdidX2UKGgGR0CWQTWweNkwaAdN6ANoCEdAqr7Qi/wiJXV9lChoBkdAlk+QZjx0+2gHTegDaAhHQKq/cAc1fmd1fZQoaAZHQJMwLdj5KvpoB03oA2gIR0Cqx8wdS2pidX2UKGgGR0CTlzMvAXVLaAdN6ANoCEdAqskUka/ATXV9lChoBkdAllNMx46fa2gHTegDaAhHQKrLHsSkCV91fZQoaAZHQJZ4GtNi6QNoB03oA2gIR0Cqy7Nvfj0ddX2UKGgGR0CW3rtapxWDaAdN6ANoCEdAqtU6ckMTe3V9lChoBkdAlFvMrEtNBWgHTegDaAhHQKrXN9hqj8F1fZQoaAZHQJfMRclgMMJoB03oA2gIR0Cq2le54GD+dX2UKGgGR0CVzTrxiG34aAdN6ANoCEdAqtriHARChXV9lChoBkdAlD/avJRwZWgHTegDaAhHQKri/7MxGlR1fZQoaAZHQJIqPW/ag29oB03oA2gIR0Cq5FGnn+yadX2UKGgGR0CSWf2ki2UjaAdN6ANoCEdAquZm+AVfu3V9lChoBkdAkxzkCih37mgHTegDaAhHQKrm91vl2eR1fZQoaAZHQJPeAZqEeyRoB03oA2gIR0Cq76U+C9RKdX2UKGgGR0CU0mki2UjcaAdN6ANoCEdAqvGC3AmAsnV9lChoBkdAlTa0A5q/NGgHTegDaAhHQKr0pDArQPZ1fZQoaAZHQJSp/9l2/ztoB03oA2gIR0Cq9YHqmj0udX2UKGgGR0CVliMEidJ8aAdN6ANoCEdAqv5Ze3QUpXV9lChoBkdAlPzlw5vLo2gHTegDaAhHQKr/nogV45d1fZQoaAZHQJNi7mA9V3loB03oA2gIR0CrAa7UG3WndX2UKGgGR0CV7Rjfek57aAdN6ANoCEdAqwI9VcUuc3V9lChoBkdAl16e4G2TgWgHTegDaAhHQKsKZyOJcgR1fZQoaAZHQJQxIElme19oB03oA2gIR0CrC/TisGPgdX2UKGgGR0CYC6qIrOJMaAdN6ANoCEdAqw70RODaoXV9lChoBkdAlH39ayKNymgHTegDaAhHQKsPz668QI51fZQoaAZHQJeNaDQJHAhoB03oA2gIR0CrGVuryUcGdX2UKGgGR0CXPFcE/0NCaAdN6ANoCEdAqxqv+uNgjXV9lChoBkdAltTw8KXv6WgHTegDaAhHQKscr7u2JBR1fZQoaAZHQJXgbKJVKf5oB03oA2gIR0CrHTdhiLEUdX2UKGgGR0CVKbYlpoK2aAdN6ANoCEdAqyVLHU+cIHV9lChoBkdAlgAdrO7g9GgHTegDaAhHQKsmkDmKZUl1fZQoaAZHQJYbUf/3nIRoB03oA2gIR0CrKMiEQGwBdX2UKGgGR0CVGhYqG1x9aAdN6ANoCEdAqymTiqABk3V9lChoBkdAlVYPPHDJl2gHTegDaAhHQKs0chNdqtZ1fZQoaAZHQJO4GeumrKhoB03oA2gIR0CrNbu4wyqNdX2UKGgGR0CVurprDZUUaAdN6ANoCEdAqzfXU8V58nV9lChoBkdAlUXlK9PDYWgHTegDaAhHQKs4aGB4D9x1fZQoaAZHQJa3+cmShaloB03oA2gIR0CrQL0/GEPEdX2UKGgGR0CWT6bfP5YYaAdN6ANoCEdAq0IIAS39aXV9lChoBkdAlkjMzqKP4mgHTegDaAhHQKtEEupS75F1fZQoaAZHQJcaPBFd9lVoB03oA2gIR0CrRKJyp71JdX2UKGgGR0CTBHpCa7VbaAdN6ANoCEdAq0/xMxoIwHV9lChoBkdAk80i53C9AWgHTegDaAhHQKtRPcRlHz91fZQoaAZHQJODfZWaMJhoB03oA2gIR0CrU0vM8ox6dX2UKGgGR0CUQQaYu01JaAdN6ANoCEdAq1PYQJ5VwXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1021d992e1d32fdb8f370e98b550d948d508939b186fd339a58fc6f38dee12dc
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31570888d4f458048617eff3e71b76afb90a45975198baab68ff959d023b723f
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f21c0141310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f21c01413a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f21c0141430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f21c01414c0>", "_build": "<function ActorCriticPolicy._build at 0x7f21c0141550>", "forward": "<function ActorCriticPolicy.forward at 0x7f21c01415e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f21c0141670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f21c0141700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f21c0141790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f21c0141820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21c01418b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f21c0141940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f21c0154ed0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676721843886259142, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOcxSr93w5W/lB1Dv6vwzz6p8FE/UHPQPosGVT8ijjY/tdy2v0oC3Dv8q3S/0s/APG34yj/YBW8/RzATv/0miD9pkOM+IgA7QJbPVT/MBZC/ZOXRvsuBbj9Yq1a/1oUzPzGRsb/+2tA+FKLuv+8hgD/tzDe/03Y8v/o+1zxIkh+/Eb4JwI3NPD+Choy/d/xWP5fKpL/0rok994lpv78Rjr1iwx2+MvA5v0+UOj/ntKE8duwYPzHSg78U1IK/fIBAv+19Cb9vCMA+LYWJPhyoFD7kiTg//trQPr1QCT80vH+/xZkzvo+LVL+8LNi9S9OrP4m7nD+S/Ga+JIGrPclQRD9XTBc9tOT+v9eVh78e3YW8WVUyP+R+/rz1Rwm/KzQ8P+4VLD8NDdo/scf1PgE2Gj+F8Za/N4RUvw/AH73JYyQ+MZGxv/7a0D4Uou6/NLx/v9hTFb9e8zW/M6VyPf2JTD/k8STAPh7fPsRJS7/B1Rs+WWKJv0jXNj8sUKS+IrtBP3MCWz//8LC/cRo1PwyhYUA6kYE/Q/zsvip0CL/33J3Ad+05v8LXuT4WQRA/ql7cP+SJOD/+2tA+FKLuv+8hgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABI1Wu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3S0SPgAAAAB4FuG/AAAAAFN07T0AAAAAJ4LbPwAAAAB6bRC8AAAAABNf/D8AAAAAwHH7PQAAAABZxPm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMYbDNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAo70z0AAAAA+VHzvwAAAACQ1g4+AAAAANy76D8AAAAAEJdHPAAAAAAncfQ/AAAAANkNgLsAAAAA8Tb0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKxMkzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICMx3W9AAAAAJXv9b8AAAAAzqHXvQAAAACwptk/AAAAALOZJLwAAAAA9mLbPwAAAADtas29AAAAAPNm6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADv5p62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0rdLPQAAAABX6/O/AAAAAPomlz0AAAAAtcDrPwAAAADuZwu+AAAAACb88T8AAAAAuiCvPQAAAAB5Reu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZyGuxKQJaMAWyUTegDjAF0lEdAqgmGsPrfL3V9lChoBkdAlehINZvDQGgHTegDaAhHQKoLj9KEnLJ1fZQoaAZHQJUXDQ8fV7RoB03oA2gIR0CqDqS8zyjIdX2UKGgGR0CVZfAQg9vCaAdN6ANoCEdAqg80+otL+XV9lChoBkdAlcBF6Z6Uq2gHTegDaAhHQKoXUJvYODt1fZQoaAZHQJYwEphF3INoB03oA2gIR0CqGJrLIPsidX2UKGgGR0CVtHtYB/7SaAdN6ANoCEdAqhqeycCo0nV9lChoBkdAlZaG7OE/S2gHTegDaAhHQKobLXNke6t1fZQoaAZHQJfdDek56t1oB03oA2gIR0CqI4+3x4IKdX2UKGgGR0CWAMe6I3zdaAdN6ANoCEdAqiVoZVGTcXV9lChoBkdAlhtRL5AQhGgHTegDaAhHQKookWJrLyN1fZQoaAZHQJTsf7k4m1JoB03oA2gIR0CqKXFar3j/dX2UKGgGR0CVkQLfDUExaAdN6ANoCEdAqjJh3qzJIXV9lChoBkdAl2JlVo6CDmgHTegDaAhHQKozqtthuwZ1fZQoaAZHQJXSoMMI/qxoB03oA2gIR0CqNcFhgE2YdX2UKGgGR0CXqhZrHlwMaAdN6ANoCEdAqjZWBJ7LMnV9lChoBkdAmJt1xCIDYGgHTegDaAhHQKo+YzWPLgZ1fZQoaAZHQJYO4gQpWmxoB03oA2gIR0CqP8p6po9LdX2UKGgGR0CUuikmhM8HaAdN6ANoCEdAqkLZPO6d2HV9lChoBkdAk8E5/gBLf2gHTegDaAhHQKpDuTKT0QN1fZQoaAZHQJNnSaw2VFBoB03oA2gIR0CqTfkF4cFRdX2UKGgGR0CQY59W6shgaAdN6ANoCEdAqk9IcFQl8nV9lChoBkdAlGUnzcynDWgHTegDaAhHQKpRWrbxmTV1fZQoaAZHQJBeSgsbvPVoB03oA2gIR0CqUenAIppfdX2UKGgGR0CSnUBRyfcvaAdN6ANoCEdAqlpHykKu0XV9lChoBkdAk2gACGN70GgHTegDaAhHQKpbkzQ/oq11fZQoaAZHQJLVPRfF72NoB03oA2gIR0CqXgc2Jiy6dX2UKGgGR0CTBet/nW8RaAdN6ANoCEdAql7ZSm65G3V9lChoBkdAk55rGza9K2gHTegDaAhHQKppnWV/tpp1fZQoaAZHQJRP/MV1wHZoB03oA2gIR0Cqat1Z1V5sdX2UKGgGR0CTB8Pn0TURaAdN6ANoCEdAqmzvWYnfEXV9lChoBkdAk1wrKzRhMWgHTegDaAhHQKpths1KoQ51fZQoaAZHQI1WTPdEb5xoB03oA2gIR0CqdbXuE25ydX2UKGgGR0CUIV+fh/AkaAdN6ANoCEdAqnclJWeYlnV9lChoBkdAjiHIP9UCJWgHTegDaAhHQKp5MaXrt3R1fZQoaAZHQJRR7YxtYSxoB03oA2gIR0CqecSnk1dgdX2UKGgGR0CT4IeEIw/QaAdN6ANoCEdAqoU1/YraunV9lChoBkdAlSFalLvkR2gHTegDaAhHQKqGhdMTN+t1fZQoaAZHQJRqk/FBIFxoB03oA2gIR0CqiJbQb+98dX2UKGgGR0CQbcg6EJ0GaAdN6ANoCEdAqokmIInjQ3V9lChoBkdAkuIgqqfe12gHTegDaAhHQKqRN2WY4Q11fZQoaAZHQJPZqhqTKT1oB03oA2gIR0CqkoO5SWJKdX2UKGgGR0CUjfbpeNT+aAdN6ANoCEdAqpSR7gKnenV9lChoBkdAlZRhe1KGtmgHTegDaAhHQKqVJd7fHgh1fZQoaAZHQJVOtXDFZPloB03oA2gIR0CqoGrv9cbBdX2UKGgGR0CVJp4EfT1DaAdN6ANoCEdAqqHBM10knnV9lChoBkdAlHSX2ZiNKmgHTegDaAhHQKqj1VI7Njd1fZQoaAZHQJVT3wnYxtZoB03oA2gIR0CqpGMVUModdX2UKGgGR0CUFoMRpUPyaAdN6ANoCEdAqqx4Kc/dI3V9lChoBkdAkmLMXFcY7GgHTegDaAhHQKqtxollbvB1fZQoaAZHQJQ4V98Z1mtoB03oA2gIR0Cqr9BD5TIedX2UKGgGR0CUSTVcD8tPaAdN6ANoCEdAqrBavLX+VHV9lChoBkdAlxh1KwpvxmgHTegDaAhHQKq6bn7pFCt1fZQoaAZHQJPV1ggHNX5oB03oA2gIR0CqvGt29tdidX2UKGgGR0CWQTWweNkwaAdN6ANoCEdAqr7Qi/wiJXV9lChoBkdAlk+QZjx0+2gHTegDaAhHQKq/cAc1fmd1fZQoaAZHQJMwLdj5KvpoB03oA2gIR0Cqx8wdS2pidX2UKGgGR0CTlzMvAXVLaAdN6ANoCEdAqskUka/ATXV9lChoBkdAllNMx46fa2gHTegDaAhHQKrLHsSkCV91fZQoaAZHQJZ4GtNi6QNoB03oA2gIR0Cqy7Nvfj0ddX2UKGgGR0CW3rtapxWDaAdN6ANoCEdAqtU6ckMTe3V9lChoBkdAlFvMrEtNBWgHTegDaAhHQKrXN9hqj8F1fZQoaAZHQJfMRclgMMJoB03oA2gIR0Cq2le54GD+dX2UKGgGR0CVzTrxiG34aAdN6ANoCEdAqtriHARChXV9lChoBkdAlD/avJRwZWgHTegDaAhHQKri/7MxGlR1fZQoaAZHQJIqPW/ag29oB03oA2gIR0Cq5FGnn+yadX2UKGgGR0CSWf2ki2UjaAdN6ANoCEdAquZm+AVfu3V9lChoBkdAkxzkCih37mgHTegDaAhHQKrm91vl2eR1fZQoaAZHQJPeAZqEeyRoB03oA2gIR0Cq76U+C9RKdX2UKGgGR0CU0mki2UjcaAdN6ANoCEdAqvGC3AmAsnV9lChoBkdAlTa0A5q/NGgHTegDaAhHQKr0pDArQPZ1fZQoaAZHQJSp/9l2/ztoB03oA2gIR0Cq9YHqmj0udX2UKGgGR0CVliMEidJ8aAdN6ANoCEdAqv5Ze3QUpXV9lChoBkdAlPzlw5vLo2gHTegDaAhHQKr/nogV45d1fZQoaAZHQJNi7mA9V3loB03oA2gIR0CrAa7UG3WndX2UKGgGR0CV7Rjfek57aAdN6ANoCEdAqwI9VcUuc3V9lChoBkdAl16e4G2TgWgHTegDaAhHQKsKZyOJcgR1fZQoaAZHQJQxIElme19oB03oA2gIR0CrC/TisGPgdX2UKGgGR0CYC6qIrOJMaAdN6ANoCEdAqw70RODaoXV9lChoBkdAlH39ayKNymgHTegDaAhHQKsPz668QI51fZQoaAZHQJeNaDQJHAhoB03oA2gIR0CrGVuryUcGdX2UKGgGR0CXPFcE/0NCaAdN6ANoCEdAqxqv+uNgjXV9lChoBkdAltTw8KXv6WgHTegDaAhHQKscr7u2JBR1fZQoaAZHQJXgbKJVKf5oB03oA2gIR0CrHTdhiLEUdX2UKGgGR0CVKbYlpoK2aAdN6ANoCEdAqyVLHU+cIHV9lChoBkdAlgAdrO7g9GgHTegDaAhHQKsmkDmKZUl1fZQoaAZHQJYbUf/3nIRoB03oA2gIR0CrKMiEQGwBdX2UKGgGR0CVGhYqG1x9aAdN6ANoCEdAqymTiqABk3V9lChoBkdAlVYPPHDJl2gHTegDaAhHQKs0chNdqtZ1fZQoaAZHQJO4GeumrKhoB03oA2gIR0CrNbu4wyqNdX2UKGgGR0CVurprDZUUaAdN6ANoCEdAqzfXU8V58nV9lChoBkdAlUXlK9PDYWgHTegDaAhHQKs4aGB4D9x1fZQoaAZHQJa3+cmShaloB03oA2gIR0CrQL0/GEPEdX2UKGgGR0CWT6bfP5YYaAdN6ANoCEdAq0IIAS39aXV9lChoBkdAlkjMzqKP4mgHTegDaAhHQKtEEupS75F1fZQoaAZHQJcaPBFd9lVoB03oA2gIR0CrRKJyp71JdX2UKGgGR0CTBHpCa7VbaAdN6ANoCEdAq0/xMxoIwHV9lChoBkdAk80i53C9AWgHTegDaAhHQKtRPcRlHz91fZQoaAZHQJODfZWaMJhoB03oA2gIR0CrU0vM8ox6dX2UKGgGR0CUQQaYu01JaAdN6ANoCEdAq1PYQJ5VwXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dba4a8d1d5cd890d4f2e26388121bfef113a3484e4616eeadffa780e21bf345b
|
3 |
+
size 1121735
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1559.0439525818279, "std_reward": 71.14501592205917, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-18T13:03:01.178303"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f64e1a322f0c793253f2a1b35b8950a4d4ae79fc18ef0263213d829a8bfa6a97
|
3 |
+
size 2136
|