Upload 3 files
Browse filesMy first attempt to train a base model
Trained on Shahname Ferdowsi for 5000 iterations on colab
- .gitattributes +1 -0
- Shahname Ferdowsi.docx +3 -0
- ShahnameBSgenerator.pth +3 -0
- gpt_dev.ipynb +872 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Shahname[[:space:]]Ferdowsi.docx filter=lfs diff=lfs merge=lfs -text
|
Shahname Ferdowsi.docx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71d0194fdb6375dc10532ad7487835896c3fcc0831218af38fe432f45f4ffa92
|
3 |
+
size 4034012
|
ShahnameBSgenerator.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:335f91529330c9db5bf6a83808aeb7458eb4650ae870fe16c697fe75e29b0103
|
3 |
+
size 35064196
|
gpt_dev.ipynb
ADDED
@@ -0,0 +1,872 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "T4"
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
},
|
16 |
+
"accelerator": "GPU"
|
17 |
+
},
|
18 |
+
"cells": [
|
19 |
+
{
|
20 |
+
"cell_type": "markdown",
|
21 |
+
"source": [
|
22 |
+
"## Building a GPT\n",
|
23 |
+
"\n",
|
24 |
+
"Companion notebook to the [Zero To Hero](https://karpathy.ai/zero-to-hero.html) video on GPT."
|
25 |
+
],
|
26 |
+
"metadata": {
|
27 |
+
"id": "wJpXpmjEYC_T"
|
28 |
+
}
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"source": [
|
33 |
+
"!pip install -q python-docx\n"
|
34 |
+
],
|
35 |
+
"metadata": {
|
36 |
+
"id": "Rd8lAG81GIZR"
|
37 |
+
},
|
38 |
+
"execution_count": null,
|
39 |
+
"outputs": []
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"source": [
|
44 |
+
"import docx\n",
|
45 |
+
"import re\n",
|
46 |
+
"\n",
|
47 |
+
"# Replace 'your_file.docx' with your file path\n",
|
48 |
+
"doc_path = '/content/Shahname Ferdowsi.docx'\n",
|
49 |
+
"\n",
|
50 |
+
"def read_docx(file_path):\n",
|
51 |
+
" doc = docx.Document(file_path)\n",
|
52 |
+
" text = []\n",
|
53 |
+
" for para in doc.paragraphs:\n",
|
54 |
+
" text.append(para.text)\n",
|
55 |
+
" return '\\n'.join(text)\n",
|
56 |
+
"\n",
|
57 |
+
"# Read the .docx file\n",
|
58 |
+
"content = read_docx(doc_path)\n",
|
59 |
+
"\n",
|
60 |
+
"# Remove English alphabets using regex\n",
|
61 |
+
"content_without_english = re.sub('[a-zA-Z]', '', content)\n",
|
62 |
+
"\n",
|
63 |
+
"text = content_without_english\n"
|
64 |
+
],
|
65 |
+
"metadata": {
|
66 |
+
"id": "O6medjfRsLD9"
|
67 |
+
},
|
68 |
+
"execution_count": 1,
|
69 |
+
"outputs": []
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"source": [
|
74 |
+
"print(\"length of dataset in characters: \", len(text))"
|
75 |
+
],
|
76 |
+
"metadata": {
|
77 |
+
"colab": {
|
78 |
+
"base_uri": "https://localhost:8080/"
|
79 |
+
},
|
80 |
+
"id": "6xWI_VyAsN8F",
|
81 |
+
"outputId": "d703a4c4-8318-4a65-a48a-c51c94deb4c8"
|
82 |
+
},
|
83 |
+
"execution_count": 2,
|
84 |
+
"outputs": [
|
85 |
+
{
|
86 |
+
"output_type": "stream",
|
87 |
+
"name": "stdout",
|
88 |
+
"text": [
|
89 |
+
"length of dataset in characters: 3867092\n"
|
90 |
+
]
|
91 |
+
}
|
92 |
+
]
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"cell_type": "code",
|
96 |
+
"source": [
|
97 |
+
"# let's look at the first 1000 characters\n",
|
98 |
+
"print(text[:1000])"
|
99 |
+
],
|
100 |
+
"metadata": {
|
101 |
+
"colab": {
|
102 |
+
"base_uri": "https://localhost:8080/"
|
103 |
+
},
|
104 |
+
"id": "2c5V0FvqseE0",
|
105 |
+
"outputId": "de14fbee-c5d0-4ef9-95d3-23ab5d96edad"
|
106 |
+
},
|
107 |
+
"execution_count": 3,
|
108 |
+
"outputs": [
|
109 |
+
{
|
110 |
+
"output_type": "stream",
|
111 |
+
"name": "stdout",
|
112 |
+
"text": [
|
113 |
+
"\n",
|
114 |
+
"\n",
|
115 |
+
"آغاز كتاب\n",
|
116 |
+
" بنام خداوند جان و خرد \t \t كزين برتر انديشه بر نگذرد\n",
|
117 |
+
" خداوند نام و خداوند جاى \t\t خداوند روزىده رهنماى\n",
|
118 |
+
" خداوند كيوان و گردان سپهر \t فروزنده ماه و ناهيد و مهر\n",
|
119 |
+
" ز نام و نشان و گمان برترست \t \t نگارنده برشده پيكرست\n",
|
120 |
+
" به بينندگان آفريننده را \t \t نبينى مرنجان دو بيننده را\n",
|
121 |
+
" نيابد بدو نيز انديشه راه \t\t كه او برتر از نام و از جايگاه\n",
|
122 |
+
" سخن هر چه زين گوهران بگذرد \t نيابد بدو راه جان و خرد\n",
|
123 |
+
" خرد گر سخن برگزيند همى \t همان را گزيند كه بيند همى\n",
|
124 |
+
" ستودن نداند كس او را چو هست \t ميان بندگى را ببايدت بست\n",
|
125 |
+
" خرد را و جان را همى سنجد اوى در انديشۀ سخته كى گنجد اوى\n",
|
126 |
+
" بدين آلت راى و جان و زبان \t \t ستود آفريننده را كى توان\n",
|
127 |
+
" به هستيش بايد كه خستو شوى \t ز گفتار بىكار يك سو شوى\n",
|
128 |
+
" پرستنده باشى و جوينده راه \t بژرفى بفرمانش كردن نگاه\n",
|
129 |
+
" توانا بود هر كه دانا بود \n"
|
130 |
+
]
|
131 |
+
}
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"cell_type": "code",
|
136 |
+
"source": [
|
137 |
+
"# here are all the unique characters that occur in this text\n",
|
138 |
+
"chars = sorted(list(set(text)))\n",
|
139 |
+
"vocab_size = len(chars)\n",
|
140 |
+
"print(''.join(chars))\n",
|
141 |
+
"print(vocab_size)"
|
142 |
+
],
|
143 |
+
"metadata": {
|
144 |
+
"colab": {
|
145 |
+
"base_uri": "https://localhost:8080/"
|
146 |
+
},
|
147 |
+
"id": "0e-Rbyr8sfM8",
|
148 |
+
"outputId": "5742a07a-c567-465c-8ba4-520eec8dbeef"
|
149 |
+
},
|
150 |
+
"execution_count": 4,
|
151 |
+
"outputs": [
|
152 |
+
{
|
153 |
+
"output_type": "stream",
|
154 |
+
"name": "stdout",
|
155 |
+
"text": [
|
156 |
+
"\t\n",
|
157 |
+
" &()*-0123456789:[]،؟ءآأؤئابتثجحخدذرزسشصضطظعغفقكلمنهوىيَُِّْپچژکگۀی\n",
|
158 |
+
"70\n"
|
159 |
+
]
|
160 |
+
}
|
161 |
+
]
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"cell_type": "code",
|
165 |
+
"source": [
|
166 |
+
"# create a mapping from characters to integers\n",
|
167 |
+
"stoi = { ch:i for i,ch in enumerate(chars) }\n",
|
168 |
+
"itos = { i:ch for i,ch in enumerate(chars) }\n",
|
169 |
+
"encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers\n",
|
170 |
+
"decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string\n",
|
171 |
+
"\n",
|
172 |
+
"print(encode(\"سلااام چطوری\"))\n",
|
173 |
+
"print(decode(encode(\"سلااام چطوری\")))"
|
174 |
+
],
|
175 |
+
"metadata": {
|
176 |
+
"colab": {
|
177 |
+
"base_uri": "https://localhost:8080/"
|
178 |
+
},
|
179 |
+
"id": "Yw1LKNCgwjj1",
|
180 |
+
"outputId": "717375fd-ece5-49fa-f0f4-97b215c1dc5a"
|
181 |
+
},
|
182 |
+
"execution_count": 5,
|
183 |
+
"outputs": [
|
184 |
+
{
|
185 |
+
"output_type": "stream",
|
186 |
+
"name": "stdout",
|
187 |
+
"text": [
|
188 |
+
"[39, 50, 28, 28, 28, 51, 2, 63, 43, 54, 37, 68]\n",
|
189 |
+
"سلااام چطوری\n"
|
190 |
+
]
|
191 |
+
}
|
192 |
+
]
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"cell_type": "code",
|
196 |
+
"source": [
|
197 |
+
"# let's now encode the entire text dataset and store it into a torch.Tensor\n",
|
198 |
+
"import torch # we use PyTorch: https://pytorch.org\n",
|
199 |
+
"data = torch.tensor(encode(text), dtype=torch.long)\n",
|
200 |
+
"print(data.shape, data.dtype)\n",
|
201 |
+
"print(data[:1000]) # the 1000 characters we looked at earier will to the GPT look like this"
|
202 |
+
],
|
203 |
+
"metadata": {
|
204 |
+
"id": "YJb0OXPwzvqg"
|
205 |
+
},
|
206 |
+
"execution_count": null,
|
207 |
+
"outputs": []
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"cell_type": "code",
|
211 |
+
"source": [
|
212 |
+
"# Let's now split up the data into train and validation sets\n",
|
213 |
+
"n = int(0.9*len(data)) # first 90% will be train, rest val\n",
|
214 |
+
"train_data = data[:n]\n",
|
215 |
+
"val_data = data[n:]"
|
216 |
+
],
|
217 |
+
"metadata": {
|
218 |
+
"id": "f_WIXqxz0lU5"
|
219 |
+
},
|
220 |
+
"execution_count": 8,
|
221 |
+
"outputs": []
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"cell_type": "code",
|
225 |
+
"source": [
|
226 |
+
"block_size = 8\n",
|
227 |
+
"train_data[:block_size+1]"
|
228 |
+
],
|
229 |
+
"metadata": {
|
230 |
+
"colab": {
|
231 |
+
"base_uri": "https://localhost:8080/"
|
232 |
+
},
|
233 |
+
"id": "TD5Bj8Y6IAD4",
|
234 |
+
"outputId": "fef174ac-01f6-4043-ee46-d3d59fdba345"
|
235 |
+
},
|
236 |
+
"execution_count": 9,
|
237 |
+
"outputs": [
|
238 |
+
{
|
239 |
+
"output_type": "execute_result",
|
240 |
+
"data": {
|
241 |
+
"text/plain": [
|
242 |
+
"tensor([ 1, 1, 24, 46, 28, 38, 2, 49, 30])"
|
243 |
+
]
|
244 |
+
},
|
245 |
+
"metadata": {},
|
246 |
+
"execution_count": 9
|
247 |
+
}
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"source": [
|
253 |
+
"x = train_data[:block_size]\n",
|
254 |
+
"y = train_data[1:block_size+1]\n",
|
255 |
+
"for t in range(block_size):\n",
|
256 |
+
" context = x[:t+1]\n",
|
257 |
+
" target = y[t]\n",
|
258 |
+
" print(f\"when input is {context} the target: {target}\")"
|
259 |
+
],
|
260 |
+
"metadata": {
|
261 |
+
"colab": {
|
262 |
+
"base_uri": "https://localhost:8080/"
|
263 |
+
},
|
264 |
+
"id": "9HXDe8vGJCEn",
|
265 |
+
"outputId": "2f223db6-2278-43fe-c4b0-1353dddfe538"
|
266 |
+
},
|
267 |
+
"execution_count": 10,
|
268 |
+
"outputs": [
|
269 |
+
{
|
270 |
+
"output_type": "stream",
|
271 |
+
"name": "stdout",
|
272 |
+
"text": [
|
273 |
+
"when input is tensor([1]) the target: 1\n",
|
274 |
+
"when input is tensor([1, 1]) the target: 24\n",
|
275 |
+
"when input is tensor([ 1, 1, 24]) the target: 46\n",
|
276 |
+
"when input is tensor([ 1, 1, 24, 46]) the target: 28\n",
|
277 |
+
"when input is tensor([ 1, 1, 24, 46, 28]) the target: 38\n",
|
278 |
+
"when input is tensor([ 1, 1, 24, 46, 28, 38]) the target: 2\n",
|
279 |
+
"when input is tensor([ 1, 1, 24, 46, 28, 38, 2]) the target: 49\n",
|
280 |
+
"when input is tensor([ 1, 1, 24, 46, 28, 38, 2, 49]) the target: 30\n"
|
281 |
+
]
|
282 |
+
}
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "code",
|
287 |
+
"source": [
|
288 |
+
"torch.manual_seed(1337)\n",
|
289 |
+
"batch_size = 4 # how many independent sequences will we process in parallel?\n",
|
290 |
+
"block_size = 8 # what is the maximum context length for predictions?\n",
|
291 |
+
"\n",
|
292 |
+
"def get_batch(split):\n",
|
293 |
+
" # generate a small batch of data of inputs x and targets y\n",
|
294 |
+
" data = train_data if split == 'train' else val_data\n",
|
295 |
+
" ix = torch.randint(len(data) - block_size, (batch_size,))\n",
|
296 |
+
" x = torch.stack([data[i:i+block_size] for i in ix])\n",
|
297 |
+
" y = torch.stack([data[i+1:i+block_size+1] for i in ix])\n",
|
298 |
+
" return x, y\n",
|
299 |
+
"\n",
|
300 |
+
"xb, yb = get_batch('train')\n",
|
301 |
+
"print('inputs:')\n",
|
302 |
+
"print(xb.shape)\n",
|
303 |
+
"print(xb)\n",
|
304 |
+
"print('targets:')\n",
|
305 |
+
"print(yb.shape)\n",
|
306 |
+
"print(yb)\n",
|
307 |
+
"\n",
|
308 |
+
"print('----')\n",
|
309 |
+
"\n",
|
310 |
+
"for b in range(batch_size): # batch dimension\n",
|
311 |
+
" for t in range(block_size): # time dimension\n",
|
312 |
+
" context = xb[b, :t+1]\n",
|
313 |
+
" target = yb[b,t]\n",
|
314 |
+
" print(f\"when input is {context.tolist()} the target: {target}\")"
|
315 |
+
],
|
316 |
+
"metadata": {
|
317 |
+
"id": "Q3k1Czf7LuA9"
|
318 |
+
},
|
319 |
+
"execution_count": null,
|
320 |
+
"outputs": []
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"cell_type": "code",
|
324 |
+
"source": [
|
325 |
+
"print(xb) # our input to the transformer"
|
326 |
+
],
|
327 |
+
"metadata": {
|
328 |
+
"colab": {
|
329 |
+
"base_uri": "https://localhost:8080/"
|
330 |
+
},
|
331 |
+
"id": "qpyyAeIzQjlO",
|
332 |
+
"outputId": "b4ac6055-9b61-42fa-e1e6-0f957abe5bcd"
|
333 |
+
},
|
334 |
+
"execution_count": 12,
|
335 |
+
"outputs": [
|
336 |
+
{
|
337 |
+
"output_type": "stream",
|
338 |
+
"name": "stdout",
|
339 |
+
"text": [
|
340 |
+
"tensor([[30, 37, 28, 2, 29, 34, 30, 2],\n",
|
341 |
+
" [51, 2, 40, 28, 62, 54, 37, 2],\n",
|
342 |
+
" [ 2, 2, 2, 49, 53, 2, 37, 40],\n",
|
343 |
+
" [35, 52, 35, 2, 66, 37, 35, 28]])\n"
|
344 |
+
]
|
345 |
+
}
|
346 |
+
]
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"cell_type": "code",
|
350 |
+
"source": [
|
351 |
+
"import torch\n",
|
352 |
+
"import torch.nn as nn\n",
|
353 |
+
"from torch.nn import functional as F\n",
|
354 |
+
"torch.manual_seed(1337)\n",
|
355 |
+
"\n",
|
356 |
+
"class BigramLanguageModel(nn.Module):\n",
|
357 |
+
"\n",
|
358 |
+
" def __init__(self, vocab_size):\n",
|
359 |
+
" super().__init__()\n",
|
360 |
+
" # each token directly reads off the logits for the next token from a lookup table\n",
|
361 |
+
" self.token_embedding_table = nn.Embedding(vocab_size, vocab_size)\n",
|
362 |
+
"\n",
|
363 |
+
" def forward(self, idx, targets=None):\n",
|
364 |
+
"\n",
|
365 |
+
" # idx and targets are both (B,T) tensor of integers\n",
|
366 |
+
" logits = self.token_embedding_table(idx) # (B,T,C)\n",
|
367 |
+
"\n",
|
368 |
+
" if targets is None:\n",
|
369 |
+
" loss = None\n",
|
370 |
+
" else:\n",
|
371 |
+
" B, T, C = logits.shape\n",
|
372 |
+
" logits = logits.view(B*T, C)\n",
|
373 |
+
" targets = targets.view(B*T)\n",
|
374 |
+
" loss = F.cross_entropy(logits, targets)\n",
|
375 |
+
"\n",
|
376 |
+
" return logits, loss\n",
|
377 |
+
"\n",
|
378 |
+
" def generate(self, idx, max_new_tokens):\n",
|
379 |
+
" # idx is (B, T) array of indices in the current context\n",
|
380 |
+
" for _ in range(max_new_tokens):\n",
|
381 |
+
" # get the predictions\n",
|
382 |
+
" logits, loss = self(idx)\n",
|
383 |
+
" # focus only on the last time step\n",
|
384 |
+
" logits = logits[:, -1, :] # becomes (B, C)\n",
|
385 |
+
" # apply softmax to get probabilities\n",
|
386 |
+
" probs = F.softmax(logits, dim=-1) # (B, C)\n",
|
387 |
+
" # sample from the distribution\n",
|
388 |
+
" idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)\n",
|
389 |
+
" # append sampled index to the running sequence\n",
|
390 |
+
" idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)\n",
|
391 |
+
" return idx\n",
|
392 |
+
"\n",
|
393 |
+
"m = BigramLanguageModel(vocab_size)\n",
|
394 |
+
"logits, loss = m(xb, yb)\n",
|
395 |
+
"print(logits.shape)\n",
|
396 |
+
"print(loss)\n",
|
397 |
+
"\n",
|
398 |
+
"print(decode(m.generate(idx = torch.zeros((1, 1), dtype=torch.long), max_new_tokens=100)[0].tolist()))\n"
|
399 |
+
],
|
400 |
+
"metadata": {
|
401 |
+
"id": "nql_1ER53oCf"
|
402 |
+
},
|
403 |
+
"execution_count": null,
|
404 |
+
"outputs": []
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"cell_type": "code",
|
408 |
+
"source": [
|
409 |
+
"# create a PyTorch optimizer\n",
|
410 |
+
"optimizer = torch.optim.AdamW(m.parameters(), lr=1e-3)"
|
411 |
+
],
|
412 |
+
"metadata": {
|
413 |
+
"id": "eTyJ8qAaDdiF"
|
414 |
+
},
|
415 |
+
"execution_count": 14,
|
416 |
+
"outputs": []
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"cell_type": "code",
|
420 |
+
"source": [
|
421 |
+
"batch_size = 32\n",
|
422 |
+
"for steps in range(100): # increase number of steps for good results...\n",
|
423 |
+
"\n",
|
424 |
+
" # sample a batch of data\n",
|
425 |
+
" xb, yb = get_batch('train')\n",
|
426 |
+
"\n",
|
427 |
+
" # evaluate the loss\n",
|
428 |
+
" logits, loss = m(xb, yb)\n",
|
429 |
+
" optimizer.zero_grad(set_to_none=True)\n",
|
430 |
+
" loss.backward()\n",
|
431 |
+
" optimizer.step()\n",
|
432 |
+
"\n",
|
433 |
+
"print(loss.item())\n"
|
434 |
+
],
|
435 |
+
"metadata": {
|
436 |
+
"colab": {
|
437 |
+
"base_uri": "https://localhost:8080/"
|
438 |
+
},
|
439 |
+
"id": "Hs4kI8YdEkQj",
|
440 |
+
"outputId": "31371728-b7fb-48e6-8b52-f00571f8d89f"
|
441 |
+
},
|
442 |
+
"execution_count": 15,
|
443 |
+
"outputs": [
|
444 |
+
{
|
445 |
+
"output_type": "stream",
|
446 |
+
"name": "stdout",
|
447 |
+
"text": [
|
448 |
+
"4.402019023895264\n"
|
449 |
+
]
|
450 |
+
}
|
451 |
+
]
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"cell_type": "code",
|
455 |
+
"source": [
|
456 |
+
"print(decode(m.generate(idx = torch.zeros((1, 1), dtype=torch.long), max_new_tokens=500)[0].tolist()))"
|
457 |
+
],
|
458 |
+
"metadata": {
|
459 |
+
"id": "EcVIDWAZEtjN"
|
460 |
+
},
|
461 |
+
"execution_count": null,
|
462 |
+
"outputs": []
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"cell_type": "markdown",
|
466 |
+
"source": [
|
467 |
+
"### Full finished code, for reference\n",
|
468 |
+
"\n",
|
469 |
+
"You may want to refer directly to the git repo instead though."
|
470 |
+
],
|
471 |
+
"metadata": {
|
472 |
+
"id": "ZcvKeBXoZFOY"
|
473 |
+
}
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"cell_type": "code",
|
477 |
+
"source": [
|
478 |
+
"torch.cuda.is_available()"
|
479 |
+
],
|
480 |
+
"metadata": {
|
481 |
+
"id": "IJFiK1n_WqLd",
|
482 |
+
"outputId": "f42d7502-df43-4a8d-9905-d64b4048a8fb",
|
483 |
+
"colab": {
|
484 |
+
"base_uri": "https://localhost:8080/"
|
485 |
+
}
|
486 |
+
},
|
487 |
+
"execution_count": 3,
|
488 |
+
"outputs": [
|
489 |
+
{
|
490 |
+
"output_type": "execute_result",
|
491 |
+
"data": {
|
492 |
+
"text/plain": [
|
493 |
+
"True"
|
494 |
+
]
|
495 |
+
},
|
496 |
+
"metadata": {},
|
497 |
+
"execution_count": 3
|
498 |
+
}
|
499 |
+
]
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"cell_type": "code",
|
503 |
+
"source": [
|
504 |
+
"import torch\n",
|
505 |
+
"import torch.nn as nn\n",
|
506 |
+
"from torch.nn import functional as F\n",
|
507 |
+
"\n",
|
508 |
+
"# hyperparameters\n",
|
509 |
+
"batch_size = 128 # how many independent sequences will we process in parallel?\n",
|
510 |
+
"block_size = 256 # what is the maximum context length for predictions?\n",
|
511 |
+
"max_iters = 5000\n",
|
512 |
+
"eval_interval = 300\n",
|
513 |
+
"learning_rate = 1e-3\n",
|
514 |
+
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
|
515 |
+
"eval_iters = 100\n",
|
516 |
+
"n_embd = 128 # Increase hidden size\n",
|
517 |
+
"n_head = 8 # Adjust number of attention heads\n",
|
518 |
+
"n_layer = 12 # Increase number of layers\n",
|
519 |
+
"\n",
|
520 |
+
"dropout = 0.2\n",
|
521 |
+
"# ------------\n",
|
522 |
+
"\n",
|
523 |
+
"torch.manual_seed(1337)\n",
|
524 |
+
"\n",
|
525 |
+
"\n",
|
526 |
+
"text = text\n",
|
527 |
+
"\n",
|
528 |
+
"# here are all the unique characters that occur in this text\n",
|
529 |
+
"chars = sorted(list(set(text)))\n",
|
530 |
+
"vocab_size = len(chars)\n",
|
531 |
+
"# create a mapping from characters to integers\n",
|
532 |
+
"stoi = { ch:i for i,ch in enumerate(chars) }\n",
|
533 |
+
"itos = { i:ch for i,ch in enumerate(chars) }\n",
|
534 |
+
"encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers\n",
|
535 |
+
"decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string\n",
|
536 |
+
"\n",
|
537 |
+
"# Train and test splits\n",
|
538 |
+
"data = torch.tensor(encode(text), dtype=torch.long)\n",
|
539 |
+
"n = int(0.9*len(data)) # first 90% will be train, rest val\n",
|
540 |
+
"train_data = data[:n]\n",
|
541 |
+
"val_data = data[n:]\n",
|
542 |
+
"\n",
|
543 |
+
"# data loading\n",
|
544 |
+
"def get_batch(split):\n",
|
545 |
+
" # generate a small batch of data of inputs x and targets y\n",
|
546 |
+
" data = train_data if split == 'train' else val_data\n",
|
547 |
+
" ix = torch.randint(len(data) - block_size, (batch_size,))\n",
|
548 |
+
" x = torch.stack([data[i:i+block_size] for i in ix])\n",
|
549 |
+
" y = torch.stack([data[i+1:i+block_size+1] for i in ix])\n",
|
550 |
+
" x, y = x.to(device), y.to(device)\n",
|
551 |
+
" return x, y\n",
|
552 |
+
"\n",
|
553 |
+
"@torch.no_grad()\n",
|
554 |
+
"def estimate_loss():\n",
|
555 |
+
" out = {}\n",
|
556 |
+
" model.eval()\n",
|
557 |
+
" for split in ['train', 'val']:\n",
|
558 |
+
" losses = torch.zeros(eval_iters)\n",
|
559 |
+
" for k in range(eval_iters):\n",
|
560 |
+
" X, Y = get_batch(split)\n",
|
561 |
+
" logits, loss = model(X, Y)\n",
|
562 |
+
" losses[k] = loss.item()\n",
|
563 |
+
" out[split] = losses.mean()\n",
|
564 |
+
" model.train()\n",
|
565 |
+
" return out\n",
|
566 |
+
"\n",
|
567 |
+
"class Head(nn.Module):\n",
|
568 |
+
" \"\"\" one head of self-attention \"\"\"\n",
|
569 |
+
"\n",
|
570 |
+
" def __init__(self, head_size):\n",
|
571 |
+
" super().__init__()\n",
|
572 |
+
" self.key = nn.Linear(n_embd, head_size, bias=False)\n",
|
573 |
+
" self.query = nn.Linear(n_embd, head_size, bias=False)\n",
|
574 |
+
" self.value = nn.Linear(n_embd, head_size, bias=False)\n",
|
575 |
+
" self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))\n",
|
576 |
+
"\n",
|
577 |
+
" self.dropout = nn.Dropout(dropout)\n",
|
578 |
+
"\n",
|
579 |
+
" def forward(self, x):\n",
|
580 |
+
" B,T,C = x.shape\n",
|
581 |
+
" k = self.key(x) # (B,T,C)\n",
|
582 |
+
" q = self.query(x) # (B,T,C)\n",
|
583 |
+
" # compute attention scores (\"affinities\")\n",
|
584 |
+
" wei = q @ k.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)\n",
|
585 |
+
" wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)\n",
|
586 |
+
" wei = F.softmax(wei, dim=-1) # (B, T, T)\n",
|
587 |
+
" wei = self.dropout(wei)\n",
|
588 |
+
" # perform the weighted aggregation of the values\n",
|
589 |
+
" v = self.value(x) # (B,T,C)\n",
|
590 |
+
" out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)\n",
|
591 |
+
" return out\n",
|
592 |
+
"\n",
|
593 |
+
"class MultiHeadAttention(nn.Module):\n",
|
594 |
+
" \"\"\" multiple heads of self-attention in parallel \"\"\"\n",
|
595 |
+
"\n",
|
596 |
+
" def __init__(self, num_heads, head_size):\n",
|
597 |
+
" super().__init__()\n",
|
598 |
+
" self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])\n",
|
599 |
+
" self.proj = nn.Linear(n_embd, n_embd)\n",
|
600 |
+
" self.dropout = nn.Dropout(dropout)\n",
|
601 |
+
"\n",
|
602 |
+
" def forward(self, x):\n",
|
603 |
+
" out = torch.cat([h(x) for h in self.heads], dim=-1)\n",
|
604 |
+
" out = self.dropout(self.proj(out))\n",
|
605 |
+
" return out\n",
|
606 |
+
"\n",
|
607 |
+
"class FeedFoward(nn.Module):\n",
|
608 |
+
" \"\"\" a simple linear layer followed by a non-linearity \"\"\"\n",
|
609 |
+
"\n",
|
610 |
+
" def __init__(self, n_embd):\n",
|
611 |
+
" super().__init__()\n",
|
612 |
+
" self.net = nn.Sequential(\n",
|
613 |
+
" nn.Linear(n_embd, 4 * n_embd),\n",
|
614 |
+
" nn.ReLU(),\n",
|
615 |
+
" nn.Linear(4 * n_embd, n_embd),\n",
|
616 |
+
" nn.Dropout(dropout),\n",
|
617 |
+
" )\n",
|
618 |
+
"\n",
|
619 |
+
" def forward(self, x):\n",
|
620 |
+
" return self.net(x)\n",
|
621 |
+
"\n",
|
622 |
+
"class Block(nn.Module):\n",
|
623 |
+
" \"\"\" Transformer block: communication followed by computation \"\"\"\n",
|
624 |
+
"\n",
|
625 |
+
" def __init__(self, n_embd, n_head):\n",
|
626 |
+
" # n_embd: embedding dimension, n_head: the number of heads we'd like\n",
|
627 |
+
" super().__init__()\n",
|
628 |
+
" head_size = n_embd // n_head\n",
|
629 |
+
" self.sa = MultiHeadAttention(n_head, head_size)\n",
|
630 |
+
" self.ffwd = FeedFoward(n_embd)\n",
|
631 |
+
" self.ln1 = nn.LayerNorm(n_embd)\n",
|
632 |
+
" self.ln2 = nn.LayerNorm(n_embd)\n",
|
633 |
+
"\n",
|
634 |
+
" def forward(self, x):\n",
|
635 |
+
" x = x + self.sa(self.ln1(x))\n",
|
636 |
+
" x = x + self.ffwd(self.ln2(x))\n",
|
637 |
+
" return x\n",
|
638 |
+
"\n",
|
639 |
+
"# super simple bigram model\n",
|
640 |
+
"class BigramLanguageModel(nn.Module):\n",
|
641 |
+
"\n",
|
642 |
+
" def __init__(self):\n",
|
643 |
+
" super().__init__()\n",
|
644 |
+
" # each token directly reads off the logits for the next token from a lookup table\n",
|
645 |
+
" self.token_embedding_table = nn.Embedding(vocab_size, n_embd)\n",
|
646 |
+
" self.position_embedding_table = nn.Embedding(block_size, n_embd)\n",
|
647 |
+
" self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])\n",
|
648 |
+
" self.ln_f = nn.LayerNorm(n_embd) # final layer norm\n",
|
649 |
+
" self.lm_head = nn.Linear(n_embd, vocab_size)\n",
|
650 |
+
"\n",
|
651 |
+
" def forward(self, idx, targets=None):\n",
|
652 |
+
" B, T = idx.shape\n",
|
653 |
+
"\n",
|
654 |
+
" # idx and targets are both (B,T) tensor of integers\n",
|
655 |
+
" tok_emb = self.token_embedding_table(idx) # (B,T,C)\n",
|
656 |
+
" pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)\n",
|
657 |
+
" x = tok_emb + pos_emb # (B,T,C)\n",
|
658 |
+
" x = self.blocks(x) # (B,T,C)\n",
|
659 |
+
" x = self.ln_f(x) # (B,T,C)\n",
|
660 |
+
" logits = self.lm_head(x) # (B,T,vocab_size)\n",
|
661 |
+
"\n",
|
662 |
+
" if targets is None:\n",
|
663 |
+
" loss = None\n",
|
664 |
+
" else:\n",
|
665 |
+
" B, T, C = logits.shape\n",
|
666 |
+
" logits = logits.view(B*T, C)\n",
|
667 |
+
" targets = targets.view(B*T)\n",
|
668 |
+
" loss = F.cross_entropy(logits, targets)\n",
|
669 |
+
"\n",
|
670 |
+
" return logits, loss\n",
|
671 |
+
"\n",
|
672 |
+
" def generate(self, idx, max_new_tokens):\n",
|
673 |
+
" # idx is (B, T) array of indices in the current context\n",
|
674 |
+
" for _ in range(max_new_tokens):\n",
|
675 |
+
" # crop idx to the last block_size tokens\n",
|
676 |
+
" idx_cond = idx[:, -block_size:]\n",
|
677 |
+
" # get the predictions\n",
|
678 |
+
" logits, loss = self(idx_cond)\n",
|
679 |
+
" # focus only on the last time step\n",
|
680 |
+
" logits = logits[:, -1, :] # becomes (B, C)\n",
|
681 |
+
" # apply softmax to get probabilities\n",
|
682 |
+
" probs = F.softmax(logits, dim=-1) # (B, C)\n",
|
683 |
+
" # sample from the distribution\n",
|
684 |
+
" idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)\n",
|
685 |
+
" # append sampled index to the running sequence\n",
|
686 |
+
" idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)\n",
|
687 |
+
" return idx\n",
|
688 |
+
"\n",
|
689 |
+
"model = BigramLanguageModel()\n",
|
690 |
+
"m = model.to(device)\n",
|
691 |
+
"# print the number of parameters in the model\n",
|
692 |
+
"print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters')\n",
|
693 |
+
"\n",
|
694 |
+
"# create a PyTorch optimizer\n",
|
695 |
+
"optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)\n",
|
696 |
+
"\n",
|
697 |
+
"for iter in range(max_iters):\n",
|
698 |
+
"\n",
|
699 |
+
" # every once in a while evaluate the loss on train and val sets\n",
|
700 |
+
" if iter % eval_interval == 0 or iter == max_iters - 1:\n",
|
701 |
+
" losses = estimate_loss()\n",
|
702 |
+
" print(f\"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}\")\n",
|
703 |
+
"\n",
|
704 |
+
" # sample a batch of data\n",
|
705 |
+
" xb, yb = get_batch('train')\n",
|
706 |
+
"\n",
|
707 |
+
" # evaluate the loss\n",
|
708 |
+
" logits, loss = model(xb, yb)\n",
|
709 |
+
" optimizer.zero_grad(set_to_none=True)\n",
|
710 |
+
" loss.backward()\n",
|
711 |
+
" optimizer.step()\n",
|
712 |
+
"\n",
|
713 |
+
"# generate from the model\n",
|
714 |
+
"context = torch.zeros((1, 1), dtype=torch.long, device=device)\n",
|
715 |
+
"print(decode(m.generate(context, max_new_tokens=2000)[0].tolist()))\n"
|
716 |
+
],
|
717 |
+
"metadata": {
|
718 |
+
"colab": {
|
719 |
+
"base_uri": "https://localhost:8080/"
|
720 |
+
},
|
721 |
+
"id": "hoelkOrFY8bN",
|
722 |
+
"outputId": "c01f10ef-048b-41b4-c862-031c7e7281c9"
|
723 |
+
},
|
724 |
+
"execution_count": 4,
|
725 |
+
"outputs": [
|
726 |
+
{
|
727 |
+
"output_type": "stream",
|
728 |
+
"name": "stdout",
|
729 |
+
"text": [
|
730 |
+
"2.42567 M parameters\n",
|
731 |
+
"step 0: train loss 4.4474, val loss 4.4467\n",
|
732 |
+
"step 300: train loss 1.7789, val loss 1.7773\n",
|
733 |
+
"step 600: train loss 1.4613, val loss 1.4679\n",
|
734 |
+
"step 900: train loss 1.2493, val loss 1.2604\n",
|
735 |
+
"step 1200: train loss 1.1231, val loss 1.1440\n",
|
736 |
+
"step 1500: train loss 1.0568, val loss 1.0844\n",
|
737 |
+
"step 1800: train loss 1.0104, val loss 1.0401\n",
|
738 |
+
"step 2100: train loss 0.9701, val loss 1.0066\n",
|
739 |
+
"step 2400: train loss 0.9385, val loss 0.9754\n",
|
740 |
+
"step 2700: train loss 0.9122, val loss 0.9547\n",
|
741 |
+
"step 3000: train loss 0.8927, val loss 0.9387\n",
|
742 |
+
"step 3300: train loss 0.8747, val loss 0.9226\n",
|
743 |
+
"step 3600: train loss 0.8646, val loss 0.9148\n",
|
744 |
+
"step 3900: train loss 0.8546, val loss 0.9087\n",
|
745 |
+
"step 4200: train loss 0.8414, val loss 0.8990\n",
|
746 |
+
"step 4500: train loss 0.8352, val loss 0.8919\n",
|
747 |
+
"step 4800: train loss 0.8238, val loss 0.8827\n",
|
748 |
+
"step 4999: train loss 0.8193, val loss 0.8796\n",
|
749 |
+
"\t گروهر شده جوشن با يوز رخ سروه\n",
|
750 |
+
" همى گور و ديده بيوق و تير همان غلت شاپور و چندى مپير\n",
|
751 |
+
" هم اندر زمان غلعه فرخ اوست همه سال گردنده شد گيو اوست\n",
|
752 |
+
" اگر سوگوارست پيكار بيد همى ژعف و خنجر ز سازند بيد\n",
|
753 |
+
" همه جنگ را مشك هست و غم زمين شد ز آهوش استر دژم\n",
|
754 |
+
" سپه را سر بابر افراسياب بزد باد و پاى و رعد پذير\n",
|
755 |
+
" يكى جنگ پيلى فرو مايه كرد همه بگذرد اختر اينسان كرد\n",
|
756 |
+
" بدو گفت با دو پى اى داشتست سخنگوى و كشور بافراج داست\n",
|
757 |
+
" همى جنگ جمّى بمستى زوان بشد گستهم چشم بد نيك روان\n",
|
758 |
+
" خداوند پر ما ز گستهم خور بهر معدبان طرز گهر هور\n",
|
759 |
+
" چنان تاخت شاه آمد از چو گنگ جز از غم ديدگان بس اندر درنگ\n",
|
760 |
+
" [ و گر زين و از باره آهخت و راه بدين تيغ زن شاه در رزمگاه]\n",
|
761 |
+
" سكندر بشمزين يكى رزم زشت خرد شاد بايد استيد گل\n",
|
762 |
+
" [ شگاهى تور رستم]\n",
|
763 |
+
" [ چو اورنده باشد آورد بهسال زمين زرد بسيار بينيد خاك]\n",
|
764 |
+
" [ چو خورشيد گشت از ش��ار ديد شده لشكر از ميان كار تيد]\n",
|
765 |
+
" يكى كار سودابه بىنان وزير چو تنها بدين تا بد شهريس\n",
|
766 |
+
" [ بفتراف زادى مدارى پسر كه تا چيز را نيز اسبان در حرن]\n",
|
767 |
+
" دو مانديش از كار چونى سپاه سم زاورش از آن بهر كلاه\n",
|
768 |
+
" چنين گفت پيران چنين گفت بخت كه با ناموزه شاه هنره تست\n",
|
769 |
+
" ميان دو پاكيزه بود نگذرد بكام من بريشان بشست كرد\n",
|
770 |
+
" بزابل چو فرزند تو شوم شاد برتر چنين گفت مانى كداد\n",
|
771 |
+
" برستم بايد اكنون گشت زاد دل زخم گردان و خندان براد\n",
|
772 |
+
" ورا من دبيرون تن اندر كنيد نگر تار باشى بپيوند كنيمد\n",
|
773 |
+
" شاهنامه، ص: 87\n",
|
774 |
+
" [ ورا داد پنيروز نوشين روان گر از مردم افگنده پهلوان]\n",
|
775 |
+
" [ مرا زانج دانات كردار جست سپه دار گيتى نيابد بشست]\n",
|
776 |
+
" [ تن بىگمان ميز ايران مراست كه اى نامور بخورش در نعل]\n",
|
777 |
+
" [ كسى دادهيى رزم شب چون درم درف\n"
|
778 |
+
]
|
779 |
+
}
|
780 |
+
]
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"cell_type": "code",
|
784 |
+
"source": [
|
785 |
+
"torch.save(model.state_dict(), 'language_model.pth')"
|
786 |
+
],
|
787 |
+
"metadata": {
|
788 |
+
"id": "T-rD48Xwm5pc"
|
789 |
+
},
|
790 |
+
"execution_count": 5,
|
791 |
+
"outputs": []
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"cell_type": "code",
|
795 |
+
"source": [
|
796 |
+
"from google.colab import drive\n",
|
797 |
+
"drive.mount('/content/drive')"
|
798 |
+
],
|
799 |
+
"metadata": {
|
800 |
+
"id": "grP_S0osm6-5",
|
801 |
+
"outputId": "3f478a95-bdfe-45e8-c596-ef9bdf2ce034",
|
802 |
+
"colab": {
|
803 |
+
"base_uri": "https://localhost:8080/"
|
804 |
+
}
|
805 |
+
},
|
806 |
+
"execution_count": 7,
|
807 |
+
"outputs": [
|
808 |
+
{
|
809 |
+
"output_type": "stream",
|
810 |
+
"name": "stdout",
|
811 |
+
"text": [
|
812 |
+
"Mounted at /content/drive\n"
|
813 |
+
]
|
814 |
+
}
|
815 |
+
]
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"cell_type": "code",
|
819 |
+
"source": [
|
820 |
+
"# generate from the model\n",
|
821 |
+
"context = torch.zeros((1, 1), dtype=torch.long, device=device)\n",
|
822 |
+
"print(decode(m.generate(context, max_new_tokens=2000)[0].tolist()))"
|
823 |
+
],
|
824 |
+
"metadata": {
|
825 |
+
"id": "p92PG-OEsCvv",
|
826 |
+
"outputId": "4a982c9e-51f3-4576-ae70-3fc51d1ae687",
|
827 |
+
"colab": {
|
828 |
+
"base_uri": "https://localhost:8080/"
|
829 |
+
}
|
830 |
+
},
|
831 |
+
"execution_count": 11,
|
832 |
+
"outputs": [
|
833 |
+
{
|
834 |
+
"output_type": "stream",
|
835 |
+
"name": "stdout",
|
836 |
+
"text": [
|
837 |
+
"\t چو نزديك سام بلند بسالار تركان بجايش گزند\n",
|
838 |
+
" فرامور بآتش از اندر بپاى توانه روان رهنماى بپاى\n",
|
839 |
+
" سراسر يكى مرد زان در گزيد نهان گمان آرد نه نامين كشيد\n",
|
840 |
+
" [ كه بهرام گفتش كه برداشت بجز باژ جز تخت و كشتى براشت]\n",
|
841 |
+
" [ كه تا از آن داد نژاد بود بزرگ آور و دل پر از بود]\n",
|
842 |
+
" [ شوم شند پيروز سا شاه ماه همه نامور تخت شاه و سپاه]\n",
|
843 |
+
" سر بىقباى و نامه برش چو با ماه شد بىگناهش اوى\n",
|
844 |
+
" پرستندگان گفت كامون شوى برم گفت رسم نجست از زوى اوى\n",
|
845 |
+
" همه پاك بايست مهتران همه راى گفته بديدار زيان\n",
|
846 |
+
" بفرمود تا مهر قارن نشست پى سر بسر بر بپر مهر دست\n",
|
847 |
+
" بدان تا مبادا يكى پهلوان نداريد ما دانش جهان سر و جوان\n",
|
848 |
+
" همى سخت شنگل اندر آيد بدرد بازان رزم را برانى دلي]\n",
|
849 |
+
" [ پند آگازان بر گيو نوذر شايستار و ژويه باك]\n",
|
850 |
+
" چو خورشيد زفتى هيونى گرفت بلند اندر آن شاه آن زينهارمت\n",
|
851 |
+
" بفرمود تا سر بسر هم همه بروبرز و ماه آمدش بمشت\n",
|
852 |
+
" بدو گفت كاى شهريار منست كجات كيان از پى نان نيز منست\n",
|
853 |
+
" بفرمود تا جشن درنج و تخت تهمتن نشنريد ماهيم و بخت\n",
|
854 |
+
" شاهنامه، ص: 31\n",
|
855 |
+
"\n",
|
856 |
+
" مرا نيز جنگ پآن انديشه رفت زره ساله جنگ بىغم در گرفت\n",
|
857 |
+
" از ان ناپس بهرام بيداد من\n",
|
858 |
+
" كه بر دوه باران بديوان رسيد شب تيره گفتار توم شنيد\n",
|
859 |
+
" اگر من ز كسرى مباديم آمدم و ز ان غرم دلاور كرد آمدم\n",
|
860 |
+
" ز تركان بيارى برانى زمير بمى پيل بسسيار دو تنگ\n",
|
861 |
+
" بگيريد چندى وفر اين برگ كه از بازگشتن ياد سرگشم\n",
|
862 |
+
" به مردى كو را بدو دست چو كوه فراوان شنگ اندرون شد دو گروه\n",
|
863 |
+
" ز پيروز رخ آفرين كرد دست گرفت اين سخن يافتند ز پست\n",
|
864 |
+
" همى خوان تبيرست بر حال ماه همى افسرستاد بايد ز راه\n",
|
865 |
+
" درختيست اين راى را هرچ گفت كه برخاست نامه ز انگزيست جفت\n",
|
866 |
+
" شنيد ليا مشك و بيداد چهر گمان جنگش برگ\n"
|
867 |
+
]
|
868 |
+
}
|
869 |
+
]
|
870 |
+
}
|
871 |
+
]
|
872 |
+
}
|