Upload LLaVA-LoRA model
Browse files- README.md +1 -0
- adapter_config.json +8 -1
README.md
CHANGED
@@ -18,6 +18,7 @@ The model was fine-tuned using LoRA with the following configuration:
|
|
18 |
```python
|
19 |
from peft import PeftModel
|
20 |
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
|
|
21 |
|
22 |
# Load base model
|
23 |
base_model = LlavaForConditionalGeneration.from_pretrained(
|
|
|
18 |
```python
|
19 |
from peft import PeftModel
|
20 |
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
21 |
+
import torch
|
22 |
|
23 |
# Load base model
|
24 |
base_model = LlavaForConditionalGeneration.from_pretrained(
|
adapter_config.json
CHANGED
@@ -1,13 +1,20 @@
|
|
1 |
{
|
2 |
"base_model_name_or_path": "llava-hf/llava-1.5-7b-hf",
|
|
|
3 |
"task_type": "CAUSAL_LM",
|
4 |
"inference_mode": false,
|
5 |
"r": 8,
|
6 |
"lora_alpha": 32,
|
7 |
"lora_dropout": 0.1,
|
|
|
|
|
8 |
"target_modules": [
|
9 |
"q_proj",
|
10 |
"v_proj",
|
11 |
"k_proj"
|
12 |
-
]
|
|
|
|
|
|
|
|
|
13 |
}
|
|
|
1 |
{
|
2 |
"base_model_name_or_path": "llava-hf/llava-1.5-7b-hf",
|
3 |
+
"peft_type": "LORA",
|
4 |
"task_type": "CAUSAL_LM",
|
5 |
"inference_mode": false,
|
6 |
"r": 8,
|
7 |
"lora_alpha": 32,
|
8 |
"lora_dropout": 0.1,
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"bias": "none",
|
11 |
"target_modules": [
|
12 |
"q_proj",
|
13 |
"v_proj",
|
14 |
"k_proj"
|
15 |
+
],
|
16 |
+
"modules_to_save": null,
|
17 |
+
"init_lora_weights": true,
|
18 |
+
"layers_to_transform": null,
|
19 |
+
"layers_pattern": null
|
20 |
}
|