--- base_model: sentence-transformers/all-MiniLM-L6-v2 library_name: setfit metrics: - f1 pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: [] inference: true model-index: - name: SetFit with sentence-transformers/all-MiniLM-L6-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: f1 value: 0.5494505494505495 name: F1 --- # SetFit with sentence-transformers/all-MiniLM-L6-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 256 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ## Evaluation ### Metrics | Label | F1 | |:--------|:-------| | **all** | 0.5495 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("Zlovoblachko/dimension3_setfit") # Run inference preds = model("I loved the spiderman movie!") ``` ## Training Details ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2.260895905036282e-05, 2.260895905036282e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0004 | 1 | 0.3835 | - | | 0.0177 | 50 | 0.3106 | - | | 0.0353 | 100 | 0.3232 | - | | 0.0530 | 150 | 0.319 | - | | 0.0706 | 200 | 0.3146 | - | | 0.0883 | 250 | 0.3194 | - | | 0.1059 | 300 | 0.3166 | - | | 0.1236 | 350 | 0.2941 | - | | 0.1412 | 400 | 0.3289 | - | | 0.1589 | 450 | 0.3108 | - | | 0.1766 | 500 | 0.3099 | - | | 0.1942 | 550 | 0.3072 | - | | 0.2119 | 600 | 0.2994 | - | | 0.2295 | 650 | 0.3062 | - | | 0.2472 | 700 | 0.3046 | - | | 0.2648 | 750 | 0.3086 | - | | 0.2825 | 800 | 0.3039 | - | | 0.3001 | 850 | 0.3096 | - | | 0.3178 | 900 | 0.3134 | - | | 0.3355 | 950 | 0.2965 | - | | 0.3531 | 1000 | 0.3147 | - | | 0.3708 | 1050 | 0.317 | - | | 0.3884 | 1100 | 0.3123 | - | | 0.4061 | 1150 | 0.3221 | - | | 0.4237 | 1200 | 0.2971 | - | | 0.4414 | 1250 | 0.2928 | - | | 0.4590 | 1300 | 0.2977 | - | | 0.4767 | 1350 | 0.3268 | - | | 0.4944 | 1400 | 0.2785 | - | | 0.5120 | 1450 | 0.3156 | - | | 0.5297 | 1500 | 0.3148 | - | | 0.5473 | 1550 | 0.2909 | - | | 0.5650 | 1600 | 0.3225 | - | | 0.5826 | 1650 | 0.3072 | - | | 0.6003 | 1700 | 0.3099 | - | | 0.6179 | 1750 | 0.311 | - | | 0.6356 | 1800 | 0.3213 | - | | 0.6532 | 1850 | 0.2937 | - | | 0.6709 | 1900 | 0.3177 | - | | 0.6886 | 1950 | 0.3088 | - | | 0.7062 | 2000 | 0.3017 | - | | 0.7239 | 2050 | 0.3076 | - | | 0.7415 | 2100 | 0.3164 | - | | 0.7592 | 2150 | 0.295 | - | | 0.7768 | 2200 | 0.2957 | - | | 0.7945 | 2250 | 0.3064 | - | | 0.8121 | 2300 | 0.3146 | - | | 0.8298 | 2350 | 0.3114 | - | | 0.8475 | 2400 | 0.3151 | - | | 0.8651 | 2450 | 0.3033 | - | | 0.8828 | 2500 | 0.3039 | - | | 0.9004 | 2550 | 0.3152 | - | | 0.9181 | 2600 | 0.3185 | - | | 0.9357 | 2650 | 0.2927 | - | | 0.9534 | 2700 | 0.3174 | - | | 0.9710 | 2750 | 0.3003 | - | | 0.9887 | 2800 | 0.3157 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.2.1 - Transformers: 4.44.2 - PyTorch: 2.5.0+cu121 - Datasets: 3.0.2 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```