File size: 4,468 Bytes
d10993b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
[paths]
train = "/tmp/tmp9aua6ly9/tmp_train.spacy"
dev = "/tmp/tmp9aua6ly9/tmp_dev.spacy"
vectors = null
init_tok2vec = null

[system]
gpu_allocator = "pytorch"
seed = 0

[nlp]
lang = "fo"
pipeline = ["transformer","trainable_lemmatizer","tagger","morphologizer","parser"]
batch_size = 128
disabled = []
before_creation = null
after_creation = null
after_pipeline_creation = null
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
vectors = {"@vectors":"spacy.Vectors.v1"}

[components]

[components.morphologizer]
factory = "morphologizer"
extend = false
label_smoothing = 0.0
overwrite = true
scorer = {"@scorers":"spacy.morphologizer_scorer.v1"}

[components.morphologizer.model]
@architectures = "spacy.Tagger.v2"
nO = null
normalize = false

[components.morphologizer.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
pooling = {"@layers":"reduce_mean.v1"}
upstream = "*"

[components.parser]
factory = "parser"
learn_tokens = false
min_action_freq = 30
moves = null
scorer = {"@scorers":"spacy.parser_scorer.v1"}
update_with_oracle_cut_size = 100

[components.parser.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "parser"
extra_state_tokens = false
hidden_width = 128
maxout_pieces = 3
use_upper = false
nO = null

[components.parser.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
pooling = {"@layers":"reduce_mean.v1"}
upstream = "*"

[components.tagger]
factory = "tagger"
label_smoothing = 0.0
neg_prefix = "!"
overwrite = false
scorer = {"@scorers":"spacy.tagger_scorer.v1"}

[components.tagger.model]
@architectures = "spacy.Tagger.v2"
nO = null
normalize = false

[components.tagger.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
pooling = {"@layers":"reduce_mean.v1"}
upstream = "*"

[components.trainable_lemmatizer]
factory = "trainable_lemmatizer"
backoff = "orth"
min_tree_freq = 3
overwrite = false
scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"}
top_k = 3

[components.trainable_lemmatizer.model]
@architectures = "spacy.Tagger.v2"
nO = null
normalize = false

[components.trainable_lemmatizer.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
pooling = {"@layers":"reduce_mean.v1"}
upstream = "*"

[components.transformer]
factory = "transformer"
max_batch_items = 4096
set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"}

[components.transformer.model]
@architectures = "spacy-transformers.TransformerModel.v3"
name = "bert-base-multilingual-uncased"
mixed_precision = false

[components.transformer.model.get_spans]
@span_getters = "spacy-transformers.strided_spans.v1"
window = 128
stride = 96

[components.transformer.model.grad_scaler_config]

[components.transformer.model.tokenizer_config]
use_fast = true

[components.transformer.model.transformer_config]

[corpora]

[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
max_length = 0
gold_preproc = false
limit = 0
augmenter = null

[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths.train}
max_length = 0
gold_preproc = false
limit = 0
augmenter = null

[training]
accumulate_gradient = 3
dev_corpus = "corpora.dev"
train_corpus = "corpora.train"
seed = ${system.seed}
gpu_allocator = ${system.gpu_allocator}
dropout = 0.1
patience = 1600
max_epochs = 0
max_steps = 1200
eval_frequency = 200
frozen_components = []
annotating_components = []
before_to_disk = null
before_update = null

[training.batcher]
@batchers = "spacy.batch_by_padded.v1"
discard_oversize = true
size = 2000
buffer = 256
get_length = null

[training.logger]
@loggers = "spacy.ConsoleLogger.v1"
progress_bar = false

[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = false
eps = 0.00000001

[training.optimizer.learn_rate]
@schedules = "warmup_linear.v1"
warmup_steps = 250
total_steps = 20000
initial_rate = 0.00005

[training.score_weights]
lemma_acc = 0.23
tag_acc = 0.23
pos_acc = 0.11
morph_acc = 0.11
morph_per_feat = null
dep_uas = 0.11
dep_las = 0.11
dep_las_per_type = null
sents_p = null
sents_r = null
sents_f = 0.0
morph_micro_f = 0.11

[pretraining]

[initialize]
vectors = ${paths.vectors}
init_tok2vec = ${paths.init_tok2vec}
vocab_data = null
lookups = null
before_init = null
after_init = null

[initialize.components]

[initialize.tokenizer]