--- library_name: transformers license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer metrics: - rouge model-index: - name: Bart-CNN-dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bart-CNN-dataset This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2222 - Rouge1: 0.4398 - Rouge2: 0.1996 - Rougel: 0.2964 - Rougelsum: 0.4096 - Gen Len: 95.364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 250 | 1.4136 | 0.4361 | 0.2058 | 0.2957 | 0.4075 | 99.678 | | 1.3139 | 2.0 | 500 | 1.4521 | 0.444 | 0.2085 | 0.3035 | 0.4138 | 90.808 | | 1.3139 | 3.0 | 750 | 1.5573 | 0.4409 | 0.2046 | 0.2945 | 0.4102 | 100.502 | | 0.7471 | 4.0 | 1000 | 1.6873 | 0.4429 | 0.205 | 0.2985 | 0.4119 | 96.34 | | 0.7471 | 5.0 | 1250 | 1.8544 | 0.4395 | 0.2016 | 0.2964 | 0.409 | 100.1 | | 0.4392 | 6.0 | 1500 | 2.0239 | 0.4407 | 0.2012 | 0.2946 | 0.4085 | 97.476 | | 0.4392 | 7.0 | 1750 | 2.1492 | 0.4409 | 0.199 | 0.2947 | 0.4101 | 94.41 | | 0.2886 | 8.0 | 2000 | 2.2222 | 0.4398 | 0.1996 | 0.2964 | 0.4096 | 95.364 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3