--- license: apache-2.0 --- # NCUEatingAI-0.5B-v1 This repository provides an example of how to use the **NCUEatingAI-0.5B-v1** large language model from Hugging Face for chat-based inference. The model can be customized to act like any persona you specify in the system prompt, and it generates conversational responses based on user inputs. ## Model Information - **Model:** [ZoneTwelve/NCUEatingAI-0.5B-v1](https://huggingface.co/ZoneTwelve/NCUEatingAI-0.5B-v1) - **Size:** 0.5 billion parameters - **Task:** Conversational AI / Chatbot ## Usage ### System Prompt You can set a system prompt to define how the model should behave during interactions. A simple example format is: ``` "You act like $USERNAME" ``` Where `$USERNAME` can be replaced with the desired persona (e.g., "a helpful assistant", "a curious learner", etc.). ### Inference Example Here’s a simple way to perform inference using the model. You’ll need to load the model and tokenizer, define the user and system prompts, and format the input using the `apply_chat_template` method. ### Code Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch def chat_with_ncueatingai( model_path: str = "ZoneTwelve/NCUEatingAI-0.5B-v1", prompt: str = "What's for lunch?", system_prompt: str = "You act like a @ZoneTwelve.", max_tokens: int = 64, ): # Load the model and tokenizer model = AutoModelForCausalLM.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) # Prepare the chat messages messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt} ] # Apply chat template input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # Tokenize inputs inputs = tokenizer(input_text, return_tensors="pt") # Generate response with torch.no_grad(): outputs = model.generate( inputs.input_ids, max_length=max_tokens, pad_token_id=tokenizer.eos_token_id ) # Decode the response response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Example usage if __name__ == "__main__": response = chat_with_ncueatingai( prompt="What's for lunch?", system_prompt="You act like @ZoneTwelve." ) print("Model Response:", response) ``` ### Parameters - `model_path`: The path or Hugging Face model hub identifier, default is `"ZoneTwelve/NCUEatingAI-0.5B-v1"`. - `prompt`: The user’s input prompt, which the model will respond to. - `system_prompt`: Defines the behavior or persona of the model. - `max_tokens`: The maximum number of tokens in the generated response. ### Requirements Ensure the following Python packages are installed: ```bash pip install torch transformers ``` ### Model Download You can download the model directly from Hugging Face using: ```python model = AutoModelForCausalLM.from_pretrained("ZoneTwelve/NCUEatingAI-0.5B-v1") tokenizer = AutoTokenizer.from_pretrained("ZoneTwelve/NCUEatingAI-0.5B-v1") ``` ### License This project is licensed under the terms of the MIT license. See [LICENSE](./LICENSE) for details. --- Enjoy using **NCUEatingAI-0.5B-v1** to build your personalized conversational AI!