Zoyd commited on
Commit
9237926
·
verified ·
1 Parent(s): f83c01e

Upload folder using huggingface_hub

Browse files
LICENSE ADDED
File without changes
README.md ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ license: other
4
+ license_name: mnpl
5
+ license_link: https://mistral.ai/licences/MNPL-0.1.md
6
+ tags:
7
+ - code
8
+ language:
9
+ - code
10
+ ---
11
+ **Exllamav2** quant (**exl2** / **8.0 bpw**) made with ExLlamaV2 v0.1.1
12
+
13
+ Other EXL2 quants:
14
+ | **Quant** | **Model Size** | **lm_head** |
15
+ | ----- | ---------- | ------- |
16
+ |<center>**[2.2](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-2_2bpw_exl2)**</center> | <center>6296 MB</center> | <center>6</center> |
17
+ |<center>**[2.5](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-2_5bpw_exl2)**</center> | <center>7045 MB</center> | <center>6</center> |
18
+ |<center>**[3.0](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-3_0bpw_exl2)**</center> | <center>8347 MB</center> | <center>6</center> |
19
+ |<center>**[3.5](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-3_5bpw_exl2)**</center> | <center>9652 MB</center> | <center>6</center> |
20
+ |<center>**[3.75](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-3_75bpw_exl2)**</center> | <center>10297 MB</center> | <center>6</center> |
21
+ |<center>**[4.0](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-4_0bpw_exl2)**</center> | <center>10953 MB</center> | <center>6</center> |
22
+ |<center>**[4.25](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-4_25bpw_exl2)**</center> | <center>11603 MB</center> | <center>6</center> |
23
+ |<center>**[5.0](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-5_0bpw_exl2)**</center> | <center>13553 MB</center> | <center>6</center> |
24
+ |<center>**[6.0](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-6_0bpw_exl2)**</center> | <center>16185 MB</center> | <center>8</center> |
25
+ |<center>**[6.5](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-6_5bpw_exl2)**</center> | <center>17484 MB</center> | <center>8</center> |
26
+ |<center>**[8.0](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-8_0bpw_exl2)**</center> | <center>19350 MB</center> | <center>8</center> |
27
+
28
+
29
+ Converted using [this](https://huggingface.co/bullerwins/Codestral-22B-v0.1-hf/blob/main/convert_mistral_weights_to_hf-22B.py) script
30
+
31
+ # Model Card for Codestral-22B-v0.1
32
+
33
+ Codestrall-22B-v0.1 is trained on a diverse dataset of 80+ programming languages, including the most popular ones, such as Python, Java, C, C++, JavaScript, and Bash (more details in the [Blogpost](https://mistral.ai/news/codestral/)). The model can be queried:
34
+ - As instruct, for instance to answer any questions about a code snippet (write documentation, explain, factorize) or to generate code following specific indications
35
+ - As Fill in the Middle (FIM), to predict the middle tokens between a prefix and a suffix (very useful for software development add-ons like in VS Code)
36
+
37
+
38
+ ## Installation
39
+
40
+ It is recommended to use `mistralai/Codestral-22B-v0.1` with [mistral-inference](https://github.com/mistralai/mistral-inference).
41
+
42
+ ```
43
+ pip install mistral_inference
44
+ ```
45
+
46
+ ## Download
47
+
48
+ ```py
49
+ from huggingface_hub import snapshot_download
50
+ from pathlib import Path
51
+
52
+ mistral_models_path = Path.home().joinpath('mistral_models', 'Codestral-22B-v0.1')
53
+ mistral_models_path.mkdir(parents=True, exist_ok=True)
54
+
55
+ snapshot_download(repo_id="mistralai/Codestral-22B-v0.1", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)
56
+ ```
57
+
58
+ ### Chat
59
+
60
+ After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment.
61
+
62
+ ```
63
+ mistral-chat $HOME/mistral_models/Codestral-22B-v0.1 --instruct --max_tokens 256
64
+ ```
65
+
66
+ Will generate an answer to "Write me a function that computes fibonacci in Rust" and should give something along the following lines:
67
+
68
+ ```
69
+ Sure, here's a simple implementation of a function that computes the Fibonacci sequence in Rust. This function takes an integer `n` as an argument and returns the `n`th Fibonacci number.
70
+
71
+ fn fibonacci(n: u32) -> u32 {
72
+ match n {
73
+ 0 => 0,
74
+ 1 => 1,
75
+ _ => fibonacci(n - 1) + fibonacci(n - 2),
76
+ }
77
+ }
78
+
79
+ fn main() {
80
+ let n = 10;
81
+ println!("The {}th Fibonacci number is: {}", n, fibonacci(n));
82
+ }
83
+
84
+ This function uses recursion to calculate the Fibonacci number. However, it's not the most efficient solution because it performs a lot of redundant calculations. A more efficient solution would use a loop to iteratively calculate the Fibonacci numbers.
85
+ ```
86
+
87
+
88
+ ### Fill-in-the-middle (FIM)
89
+
90
+ After installing `mistral_inference` and running `pip install --upgrade mistral_common` to make sure to have mistral_common>=1.2 installed:
91
+
92
+ ```py
93
+ from mistral_inference.model import Transformer
94
+ from mistral_inference.generate import generate
95
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
96
+ from mistral_common.tokens.instruct.request import FIMRequest
97
+
98
+ tokenizer = MistralTokenizer.v3()
99
+ model = Transformer.from_folder("~/codestral-22B-240529")
100
+
101
+ prefix = """def add("""
102
+ suffix = """ return sum"""
103
+
104
+ request = FIMRequest(prompt=prefix, suffix=suffix)
105
+
106
+ tokens = tokenizer.encode_fim(request).tokens
107
+
108
+ out_tokens, _ = generate([tokens], model, max_tokens=256, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
109
+ result = tokenizer.decode(out_tokens[0])
110
+
111
+ middle = result.split(suffix)[0].strip()
112
+ print(middle)
113
+ ```
114
+
115
+ Should give something along the following lines:
116
+
117
+ ```
118
+ num1, num2):
119
+
120
+ # Add two numbers
121
+ sum = num1 + num2
122
+
123
+ # return the sum
124
+ ```
125
+
126
+ ## Limitations
127
+
128
+ The Codestral-22B-v0.1 does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
129
+ make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
130
+
131
+ ## License
132
+
133
+ Codestral-22B-v0.1 is released under the `MNLP-0.1` license.
134
+
135
+ ## The Mistral AI Team
136
+
137
+ Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Jean-Malo Delignon, Jia Li, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickael Seznec, Nicolas Schuhl, Patrick von Platen, Romain Sauvestre, Pierre Stock, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Thibault Schueller, Timothée Lacroix, Théophile Gervet, Thomas Wang, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MistralForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 6144,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 16384,
12
+ "max_position_embeddings": 32768,
13
+ "model_type": "mistral",
14
+ "num_attention_heads": 48,
15
+ "num_hidden_layers": 56,
16
+ "num_key_value_heads": 8,
17
+ "rms_norm_eps": 1e-05,
18
+ "rope_theta": 1000000.0,
19
+ "sliding_window": null,
20
+ "tie_word_embeddings": false,
21
+ "torch_dtype": "bfloat16",
22
+ "transformers_version": "4.40.2",
23
+ "use_cache": true,
24
+ "vocab_size": 32768,
25
+ "quantization_config": {
26
+ "quant_method": "exl2",
27
+ "version": "0.1.1",
28
+ "bits": 8.0,
29
+ "head_bits": 8,
30
+ "calibration": {
31
+ "rows": 100,
32
+ "length": 2048,
33
+ "dataset": "(default)"
34
+ }
35
+ }
36
+ }
convert_mistral_weights_to_hf-22B.py ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import argparse
15
+ import gc
16
+ import json
17
+ import os
18
+ import shutil
19
+ import warnings
20
+
21
+ import torch
22
+ from safetensors.torch import load_file as safe_load_file
23
+
24
+ from transformers import (
25
+ LlamaTokenizer,
26
+ MistralConfig,
27
+ MistralForCausalLM,
28
+ )
29
+
30
+
31
+ try:
32
+ from transformers import LlamaTokenizerFast
33
+
34
+ tokenizer_class = LlamaTokenizerFast
35
+ except ImportError as e:
36
+ warnings.warn(e)
37
+ warnings.warn(
38
+ "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
39
+ )
40
+ tokenizer_class = LlamaTokenizer
41
+
42
+ """
43
+ Sample usage:
44
+
45
+ ```
46
+ python src/transformers/models/mistral/convert_mistral_weights_to_hf.py \
47
+ --input_dir /path/to/downloaded/mistral/weights --model_size 22B --output_dir /output/path
48
+ ```
49
+
50
+ Thereafter, models can be loaded via:
51
+
52
+ ```py
53
+ from transformers import MistralForCausalLM, LlamaTokenizer
54
+
55
+ model = MistralForCausalLM.from_pretrained("/output/path")
56
+ tokenizer = LlamaTokenizer.from_pretrained("/output/path")
57
+ ```
58
+
59
+ Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
60
+ come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
61
+ """
62
+
63
+ NUM_SHARDS = {"22B": 1}
64
+
65
+
66
+ def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):
67
+ return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)
68
+
69
+
70
+ def read_json(path):
71
+ with open(path, "r") as f:
72
+ return json.load(f)
73
+
74
+
75
+ def write_json(text, path):
76
+ with open(path, "w") as f:
77
+ json.dump(text, f)
78
+
79
+
80
+ def write_model(model_path, input_base_path, model_size, tokenizer_path=None, safe_serialization=True, is_v3=False):
81
+ # for backward compatibility, before you needed the repo to be called `my_repo/model_size`
82
+ if not os.path.isfile(os.path.join(input_base_path, "params.json")):
83
+ input_base_path = os.path.join(input_base_path, model_size)
84
+
85
+ os.makedirs(model_path, exist_ok=True)
86
+ tmp_model_path = os.path.join(model_path, "tmp")
87
+ os.makedirs(tmp_model_path, exist_ok=True)
88
+
89
+ params = read_json(os.path.join(input_base_path, "params.json"))
90
+ num_shards = NUM_SHARDS[model_size]
91
+
92
+ sliding_window = params.get("sliding_window", None)
93
+
94
+ # For some reason this is a string in the params.json
95
+ if sliding_window is not None:
96
+ sliding_window = int(sliding_window)
97
+
98
+ n_layers = params["n_layers"]
99
+ n_heads = params["n_heads"]
100
+ n_heads_per_shard = n_heads // num_shards
101
+ dim = params["dim"]
102
+ dims_per_head = dim // n_heads
103
+ base = params.get("rope_theta", 10000.0)
104
+ inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
105
+ max_position_embeddings = 4096 * 8
106
+
107
+ if tokenizer_path is not None:
108
+ tokenizer = tokenizer_class(tokenizer_path + ".v3" if is_v3 else "")
109
+ tokenizer.save_pretrained(model_path)
110
+ vocab_size = tokenizer.vocab_size if tokenizer_path is not None else 32000
111
+
112
+ if "n_kv_heads" in params:
113
+ num_key_value_heads = params["n_kv_heads"] # for GQA / MQA
114
+ num_local_key_value_heads = num_key_value_heads // num_shards
115
+ key_value_dim = dims_per_head * num_local_key_value_heads
116
+ else: # compatibility with other checkpoints
117
+ num_key_value_heads = n_heads
118
+ num_local_key_value_heads = n_heads_per_shard
119
+ key_value_dim = dim
120
+
121
+ # permute for sliced rotary
122
+ def permute(w, n_heads=n_heads, dim1=dim, dim2=dim):
123
+ return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)
124
+
125
+ print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
126
+
127
+ # Load weights - for v3 models the consolidated weights are in a single file format in safetensors
128
+ if is_v3:
129
+ loaded = [safe_load_file(os.path.join(input_base_path, "consolidated.safetensors"))]
130
+ else:
131
+ loaded = [
132
+ torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
133
+ for i in range(num_shards)
134
+ ]
135
+ param_count = 0
136
+ index_dict = {"weight_map": {}}
137
+ for layer_i in range(n_layers):
138
+ filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
139
+
140
+ # Sharded
141
+ # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
142
+ # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
143
+ # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
144
+
145
+ state_dict = {
146
+ f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
147
+ f"layers.{layer_i}.attention_norm.weight"
148
+ ].clone(),
149
+ f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
150
+ f"layers.{layer_i}.ffn_norm.weight"
151
+ ].clone(),
152
+ }
153
+ state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
154
+ torch.cat(
155
+ [
156
+ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
157
+ for i in range(num_shards)
158
+ ],
159
+ dim=0,
160
+ ).reshape(dim, dim)
161
+ )
162
+ state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
163
+ torch.cat(
164
+ [
165
+ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(
166
+ num_local_key_value_heads, dims_per_head, dim
167
+ )
168
+ for i in range(num_shards)
169
+ ],
170
+ dim=0,
171
+ ).reshape(key_value_dim, dim),
172
+ num_key_value_heads,
173
+ key_value_dim,
174
+ dim,
175
+ )
176
+ state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
177
+ [
178
+ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(num_local_key_value_heads, dims_per_head, dim)
179
+ for i in range(num_shards)
180
+ ],
181
+ dim=0,
182
+ ).reshape(key_value_dim, dim)
183
+
184
+ state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
185
+ [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
186
+ )
187
+ state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
188
+ [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0
189
+ )
190
+ state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
191
+ [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1
192
+ )
193
+ state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
194
+ [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0
195
+ )
196
+
197
+ state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
198
+ for k, v in state_dict.items():
199
+ index_dict["weight_map"][k] = filename
200
+ param_count += v.numel()
201
+ torch.save(state_dict, os.path.join(tmp_model_path, filename))
202
+
203
+ filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
204
+ state_dict = {
205
+ "model.norm.weight": loaded[0]["norm.weight"],
206
+ "model.embed_tokens.weight": torch.cat([loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1),
207
+ "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
208
+ }
209
+
210
+ for k, v in state_dict.items():
211
+ index_dict["weight_map"][k] = filename
212
+ param_count += v.numel()
213
+ torch.save(state_dict, os.path.join(tmp_model_path, filename))
214
+
215
+ # Write configs
216
+ index_dict["metadata"] = {"total_size": param_count * 2}
217
+ write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
218
+ config = MistralConfig(
219
+ hidden_size=dim,
220
+ intermediate_size=params["hidden_dim"],
221
+ num_attention_heads=params["n_heads"],
222
+ num_hidden_layers=params["n_layers"],
223
+ rms_norm_eps=params["norm_eps"],
224
+ num_key_value_heads=num_key_value_heads,
225
+ vocab_size=vocab_size,
226
+ rope_theta=base,
227
+ max_position_embeddings=max_position_embeddings,
228
+ sliding_window=sliding_window,
229
+ )
230
+ config.save_pretrained(tmp_model_path)
231
+
232
+ # Make space so we can load the model properly now.
233
+ del state_dict
234
+ del loaded
235
+ gc.collect()
236
+
237
+ print("Loading the checkpoint in a Mistral model.")
238
+ model = MistralForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
239
+ # Avoid saving this as part of the config.
240
+ del model.config._name_or_path
241
+ model.config.torch_dtype = torch.float16
242
+ print("Saving in the Transformers format.")
243
+
244
+ model.save_pretrained(model_path, safe_serialization=safe_serialization)
245
+ shutil.rmtree(tmp_model_path)
246
+
247
+
248
+ def write_tokenizer(tokenizer_path, input_tokenizer_path):
249
+ # Initialize the tokenizer based on the `spm` model
250
+ print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
251
+ tokenizer = tokenizer_class(input_tokenizer_path)
252
+ tokenizer.save_pretrained(tokenizer_path)
253
+
254
+
255
+ def main():
256
+ parser = argparse.ArgumentParser()
257
+ parser.add_argument(
258
+ "--input_dir",
259
+ help="Location of Mistral weights, which contains tokenizer.model and model folders",
260
+ )
261
+ parser.add_argument(
262
+ "--model_size",
263
+ choices=["22B", "tokenizer_only"],
264
+ help="'f' models correspond to the finetuned versions, and are specific to the Mistral2 official release. For more details on Mistral2, checkout the original repo: https://huggingface.co/meta-mistral",
265
+ )
266
+ parser.add_argument(
267
+ "--output_dir",
268
+ help="Location to write HF model and tokenizer",
269
+ )
270
+ parser.add_argument("--safe_serialization", type=bool, help="Whether or not to save using `safetensors`.")
271
+ parser.add_argument(
272
+ "--is_v3", action="store_true", help="Whether the checkpoints correspond to the 3rd version or not."
273
+ )
274
+ args = parser.parse_args()
275
+ spm_path = os.path.join(args.input_dir, "tokenizer.model")
276
+ if args.model_size != "tokenizer_only":
277
+ write_model(
278
+ model_path=args.output_dir,
279
+ input_base_path=args.input_dir,
280
+ model_size=args.model_size,
281
+ safe_serialization=args.safe_serialization,
282
+ tokenizer_path=spm_path,
283
+ is_v3=args.is_v3,
284
+ )
285
+ else:
286
+ write_tokenizer(args.output_dir, spm_path)
287
+
288
+
289
+ if __name__ == "__main__":
290
+ main()
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.40.2"
6
+ }
model.safetensors.index.json ADDED
@@ -0,0 +1,514 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 44494565376
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00009-of-00009.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00009.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00009.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00009.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00009.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00009.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00009.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00009.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00009.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00009.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00009.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00009.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00009.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00003-of-00009.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00003-of-00009.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00009.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00009.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00009.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00009.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00009.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00009.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00004-of-00009.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00009.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00009.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00009.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00009.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00009.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00004-of-00009.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00009.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00009.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00009.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00009.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00004-of-00009.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00004-of-00009.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00009.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00009.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00009.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00009.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00005-of-00009.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00009.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00009.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00009.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00009.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00009.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00009.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00005-of-00009.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00005-of-00009.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00005-of-00009.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00005-of-00009.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00005-of-00009.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00009.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00009.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00009.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00009.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00009.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00009.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00005-of-00009.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00005-of-00009.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00009.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00005-of-00009.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00006-of-00009.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00009.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00009.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00009.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00006-of-00009.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00006-of-00009.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00006-of-00009.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00006-of-00009.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00006-of-00009.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00006-of-00009.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00006-of-00009.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00006-of-00009.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00007-of-00009.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00006-of-00009.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00006-of-00009.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00006-of-00009.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00006-of-00009.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00006-of-00009.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00007-of-00009.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00007-of-00009.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00009.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00009.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00009.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00009.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00009.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
323
+ "model.layers.40.input_layernorm.weight": "model-00007-of-00009.safetensors",
324
+ "model.layers.40.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
325
+ "model.layers.40.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
326
+ "model.layers.40.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
327
+ "model.layers.40.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
328
+ "model.layers.40.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
329
+ "model.layers.40.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
330
+ "model.layers.40.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
331
+ "model.layers.40.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
332
+ "model.layers.41.input_layernorm.weight": "model-00007-of-00009.safetensors",
333
+ "model.layers.41.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
334
+ "model.layers.41.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
335
+ "model.layers.41.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
336
+ "model.layers.41.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
337
+ "model.layers.41.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
338
+ "model.layers.41.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
339
+ "model.layers.41.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
340
+ "model.layers.41.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
341
+ "model.layers.42.input_layernorm.weight": "model-00007-of-00009.safetensors",
342
+ "model.layers.42.mlp.down_proj.weight": "model-00007-of-00009.safetensors",
343
+ "model.layers.42.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
344
+ "model.layers.42.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
345
+ "model.layers.42.post_attention_layernorm.weight": "model-00007-of-00009.safetensors",
346
+ "model.layers.42.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
347
+ "model.layers.42.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
348
+ "model.layers.42.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
349
+ "model.layers.42.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
350
+ "model.layers.43.input_layernorm.weight": "model-00008-of-00009.safetensors",
351
+ "model.layers.43.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
352
+ "model.layers.43.mlp.gate_proj.weight": "model-00007-of-00009.safetensors",
353
+ "model.layers.43.mlp.up_proj.weight": "model-00007-of-00009.safetensors",
354
+ "model.layers.43.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
355
+ "model.layers.43.self_attn.k_proj.weight": "model-00007-of-00009.safetensors",
356
+ "model.layers.43.self_attn.o_proj.weight": "model-00007-of-00009.safetensors",
357
+ "model.layers.43.self_attn.q_proj.weight": "model-00007-of-00009.safetensors",
358
+ "model.layers.43.self_attn.v_proj.weight": "model-00007-of-00009.safetensors",
359
+ "model.layers.44.input_layernorm.weight": "model-00008-of-00009.safetensors",
360
+ "model.layers.44.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
361
+ "model.layers.44.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
362
+ "model.layers.44.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
363
+ "model.layers.44.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
364
+ "model.layers.44.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
365
+ "model.layers.44.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
366
+ "model.layers.44.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
367
+ "model.layers.44.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
368
+ "model.layers.45.input_layernorm.weight": "model-00008-of-00009.safetensors",
369
+ "model.layers.45.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
370
+ "model.layers.45.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
371
+ "model.layers.45.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
372
+ "model.layers.45.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
373
+ "model.layers.45.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
374
+ "model.layers.45.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
375
+ "model.layers.45.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
376
+ "model.layers.45.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
377
+ "model.layers.46.input_layernorm.weight": "model-00008-of-00009.safetensors",
378
+ "model.layers.46.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
379
+ "model.layers.46.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
380
+ "model.layers.46.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
381
+ "model.layers.46.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
382
+ "model.layers.46.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
383
+ "model.layers.46.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
384
+ "model.layers.46.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
385
+ "model.layers.46.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
386
+ "model.layers.47.input_layernorm.weight": "model-00008-of-00009.safetensors",
387
+ "model.layers.47.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
388
+ "model.layers.47.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
389
+ "model.layers.47.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
390
+ "model.layers.47.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
391
+ "model.layers.47.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
392
+ "model.layers.47.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
393
+ "model.layers.47.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
394
+ "model.layers.47.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
395
+ "model.layers.48.input_layernorm.weight": "model-00008-of-00009.safetensors",
396
+ "model.layers.48.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
397
+ "model.layers.48.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
398
+ "model.layers.48.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
399
+ "model.layers.48.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
400
+ "model.layers.48.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
401
+ "model.layers.48.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
402
+ "model.layers.48.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
403
+ "model.layers.48.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
404
+ "model.layers.49.input_layernorm.weight": "model-00008-of-00009.safetensors",
405
+ "model.layers.49.mlp.down_proj.weight": "model-00008-of-00009.safetensors",
406
+ "model.layers.49.mlp.gate_proj.weight": "model-00008-of-00009.safetensors",
407
+ "model.layers.49.mlp.up_proj.weight": "model-00008-of-00009.safetensors",
408
+ "model.layers.49.post_attention_layernorm.weight": "model-00008-of-00009.safetensors",
409
+ "model.layers.49.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
410
+ "model.layers.49.self_attn.o_proj.weight": "model-00008-of-00009.safetensors",
411
+ "model.layers.49.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
412
+ "model.layers.49.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
413
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00009.safetensors",
414
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
415
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00009.safetensors",
416
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00009.safetensors",
417
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
418
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00009.safetensors",
419
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00009.safetensors",
420
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00009.safetensors",
421
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00009.safetensors",
422
+ "model.layers.50.input_layernorm.weight": "model-00009-of-00009.safetensors",
423
+ "model.layers.50.mlp.down_proj.weight": "model-00009-of-00009.safetensors",
424
+ "model.layers.50.mlp.gate_proj.weight": "model-00009-of-00009.safetensors",
425
+ "model.layers.50.mlp.up_proj.weight": "model-00009-of-00009.safetensors",
426
+ "model.layers.50.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
427
+ "model.layers.50.self_attn.k_proj.weight": "model-00008-of-00009.safetensors",
428
+ "model.layers.50.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
429
+ "model.layers.50.self_attn.q_proj.weight": "model-00008-of-00009.safetensors",
430
+ "model.layers.50.self_attn.v_proj.weight": "model-00008-of-00009.safetensors",
431
+ "model.layers.51.input_layernorm.weight": "model-00009-of-00009.safetensors",
432
+ "model.layers.51.mlp.down_proj.weight": "model-00009-of-00009.safetensors",
433
+ "model.layers.51.mlp.gate_proj.weight": "model-00009-of-00009.safetensors",
434
+ "model.layers.51.mlp.up_proj.weight": "model-00009-of-00009.safetensors",
435
+ "model.layers.51.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
436
+ "model.layers.51.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
437
+ "model.layers.51.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
438
+ "model.layers.51.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
439
+ "model.layers.51.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
440
+ "model.layers.52.input_layernorm.weight": "model-00009-of-00009.safetensors",
441
+ "model.layers.52.mlp.down_proj.weight": "model-00009-of-00009.safetensors",
442
+ "model.layers.52.mlp.gate_proj.weight": "model-00009-of-00009.safetensors",
443
+ "model.layers.52.mlp.up_proj.weight": "model-00009-of-00009.safetensors",
444
+ "model.layers.52.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
445
+ "model.layers.52.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
446
+ "model.layers.52.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
447
+ "model.layers.52.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
448
+ "model.layers.52.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
449
+ "model.layers.53.input_layernorm.weight": "model-00009-of-00009.safetensors",
450
+ "model.layers.53.mlp.down_proj.weight": "model-00009-of-00009.safetensors",
451
+ "model.layers.53.mlp.gate_proj.weight": "model-00009-of-00009.safetensors",
452
+ "model.layers.53.mlp.up_proj.weight": "model-00009-of-00009.safetensors",
453
+ "model.layers.53.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
454
+ "model.layers.53.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
455
+ "model.layers.53.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
456
+ "model.layers.53.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
457
+ "model.layers.53.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
458
+ "model.layers.54.input_layernorm.weight": "model-00009-of-00009.safetensors",
459
+ "model.layers.54.mlp.down_proj.weight": "model-00009-of-00009.safetensors",
460
+ "model.layers.54.mlp.gate_proj.weight": "model-00009-of-00009.safetensors",
461
+ "model.layers.54.mlp.up_proj.weight": "model-00009-of-00009.safetensors",
462
+ "model.layers.54.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
463
+ "model.layers.54.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
464
+ "model.layers.54.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
465
+ "model.layers.54.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
466
+ "model.layers.54.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
467
+ "model.layers.55.input_layernorm.weight": "model-00009-of-00009.safetensors",
468
+ "model.layers.55.mlp.down_proj.weight": "model-00009-of-00009.safetensors",
469
+ "model.layers.55.mlp.gate_proj.weight": "model-00009-of-00009.safetensors",
470
+ "model.layers.55.mlp.up_proj.weight": "model-00009-of-00009.safetensors",
471
+ "model.layers.55.post_attention_layernorm.weight": "model-00009-of-00009.safetensors",
472
+ "model.layers.55.self_attn.k_proj.weight": "model-00009-of-00009.safetensors",
473
+ "model.layers.55.self_attn.o_proj.weight": "model-00009-of-00009.safetensors",
474
+ "model.layers.55.self_attn.q_proj.weight": "model-00009-of-00009.safetensors",
475
+ "model.layers.55.self_attn.v_proj.weight": "model-00009-of-00009.safetensors",
476
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00009.safetensors",
477
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
478
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
479
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
480
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
481
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
482
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
483
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
484
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
485
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00009.safetensors",
486
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
487
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
488
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
489
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
490
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
491
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
492
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
493
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
494
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00009.safetensors",
495
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
496
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
497
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
498
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
499
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
500
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
501
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
502
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
503
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00009.safetensors",
504
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00009.safetensors",
505
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00009.safetensors",
506
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00009.safetensors",
507
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00009.safetensors",
508
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00009.safetensors",
509
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00009.safetensors",
510
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00009.safetensors",
511
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00009.safetensors",
512
+ "model.norm.weight": "model-00009-of-00009.safetensors"
513
+ }
514
+ }
output-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8445a1717fa705febc550b18b29497ab613555b33b318cf7215fc6d371e45688
3
+ size 8532513080
output-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c786649cff123ffa33dffcb9a965e205658dc25fc4392db416782f61e5a42ce0
3
+ size 8513893008
output-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d5c1c10934e7519b7c5613475ff4e6e32ecdf69d2e50e298686731789712c06
3
+ size 3244032040
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": null,
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }