Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1142.62 +/- 247.58
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33f730dd88ed86fd5f27a42ea2f91a71a1f391f5ada8d71ee4244444e1b90db8
|
3 |
+
size 129248
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4855808940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f48558089d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4855808a60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4855808af0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4855808b80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4855808c10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4855808ca0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4855808d30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4855808dc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4855808e50>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4855808ee0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4855808f70>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f4855806500>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1684604332565119808,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFsgez96qPw+GQnbPtkriz9nZ6++McW9PYC6Kj7NIUK++JCdPXeTIEAN8MQ/zQASPoMu8L4N5Oa/sNSEvZWK7r8OIzG+naV1v9EL/76J33M/o0Q+P5jm5j8Aj32/6gGTPVkVgz9aUgrAKB4jP5vZgr9GMmVAOHyyvrK36T4STb2/PNZovg+qg70uA0O+NbVSP8lUFsBwzOW/0f36v3TPqD92tuq+hlbyv6U3HkC/TzrAdSe4v4KLBcD1sRtAirMmwAgLMD8aHlDAvnw2wKAVrT1w+nm/WlIKwK/iyL+b2YK/J/wZPy3ttz8GMZW+AvgfPzSpQr8S2Le/kXRbvss+F7+l3OO+dZWGPjK+ZD/ZqcI/0mTzvRwdwL/NZlc+zUGav72iXD7UC3u/1imNvvckD78D39k+bIKPP+4BJL+Ikcu/cPp5v1pSCsAoHiM/m9mCvwajBD93AQlAFPLTv13vhz/rVwu+Ws/QPl9Kub7J9p49xG/pPNylJD/8ifs+9jySPhOAFL5eQ92/mI5qvtn8qr9AEYk+wb91v9eFV7/zvzc/ctIEQJnTsz4lH96+6rWZv1kVgz+k5ew+KB4jP5vZgr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAInf62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwmSgPQAAAABwf96/AAAAADPi3r0AAAAAwt7zPwAAAADxrSe5AAAAABoI8D8AAAAAXTcPPgAAAACCbOu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9+z2NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFayur0AAAAA/A7wvwAAAAD4fYQ8AAAAAFSf/j8AAAAA1O8kvAAAAABjqgBAAAAAAOS8nTwAAAAAPmn+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgrIDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC6Z3C9AAAAACAw6b8AAAAAEuGavQAAAABfo9s/AAAAAJWjBj0AAAAAk+LYPwAAAAD8z+27AAAAADWn7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADPbZQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARZsCvgAAAAA8pvy/AAAAAN4imz0AAAAAsob3PwAAAACRGqA9AAAAAFdM5D8AAAAAtqnBPQAAAACM0u6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJqlDnGKhteMAWyUTegDjAF0lEdAqmiL3qRlpXV9lChoBkdAn1C0LYwqRWgHTegDaAhHQKptNE87p3Z1fZQoaAZHQJv7wDDCP6toB03oA2gIR0Cqbc7T+ee4dX2UKGgGR0CdMTpMpPRBaAdN6ANoCEdAqm8LeyiVSnV9lChoBkdAmiIYhyKekGgHTegDaAhHQKp07uIAOrh1fZQoaAZHQJrSzKwIMSdoB03oA2gIR0CqeyEnLJS0dX2UKGgGR0CX2gX9zfaYaAdN6ANoCEdAqnv7sdDIBHV9lChoBkdAmVbtJz1bq2gHTegDaAhHQKp942Xsw+N1fZQoaAZHQJvByR6nivRoB03oA2gIR0CqhKWFFlTWdX2UKGgGR0Cb/4/oaDPGaAdN6ANoCEdAqokhfOUt7XV9lChoBkdAma5bJSzgM2gHTegDaAhHQKqJqw5eZ5R1fZQoaAZHQJr5Zo371qZoB03oA2gIR0CqiuDPOY6XdX2UKGgGR0CafJOHnEEUaAdN6ANoCEdAqpC6+Yc/+3V9lChoBkdAlGF5xR2r4mgHTegDaAhHQKqVeFLWZqp1fZQoaAZHQJyKD2ys0YVoB03oA2gIR0CqljTuF6AwdX2UKGgGR0Ca0ha86FM7aAdN6ANoCEdAqpf9UMoc73V9lChoBkdAnG0sJ6Y3N2gHTegDaAhHQKqga6tDD0l1fZQoaAZHQJkSSZssQNFoB03oA2gIR0CqpPkg4ffXdX2UKGgGR0B4ul4Y77sOaAdN6ANoCEdAqqWFGCqZMXV9lChoBkdAhifrsKLKm2gHTegDaAhHQKqmt62v0RR1fZQoaAZHQJSdL5IpYtBoB03oA2gIR0CqrNBKUVzqdX2UKGgGR0CXBTObiIcjaAdN6ANoCEdAqrFlZs9B8nV9lChoBkdAmXq4zSCvo2gHTegDaAhHQKqx8LKmsNl1fZQoaAZHQJpURD4QBghoB03oA2gIR0CqszB+nZTRdX2UKGgGR0CanptzCDVZaAdN6ANoCEdAqrwWJJoTPHV9lChoBkdAnDIRZ6lchWgHTegDaAhHQKrBRlg+hXd1fZQoaAZHQJrmRcGC7K9oB03oA2gIR0CqwdO4G2TgdX2UKGgGR0CcW7la8pTdaAdN6ANoCEdAqsML6i0v5HV9lChoBkdAm0XPd69kBmgHTegDaAhHQKrJB49HMEB1fZQoaAZHQJ44AjFAE+xoB03oA2gIR0CqzYI4uK4ydX2UKGgGR0Cbsjs1KoQ4aAdN6ANoCEdAqs4QSSNfgXV9lChoBkdAnG04cR15jmgHTegDaAhHQKrPRFzdUKl1fZQoaAZHQJ5x0VoHs1NoB03oA2gIR0Cq1u0KJEYwdX2UKGgGR0CbtAimEXchaAdN6ANoCEdAqt2iZc9nsnV9lChoBkdAnTkRYV6/qWgHTegDaAhHQKreLru6VdJ1fZQoaAZHQIgerUPQOWloB03oA2gIR0Cq32MP8Q7LdX2UKGgGR0Cbh04wAU+LaAdN6ANoCEdAquVO6/ZdwHV9lChoBkdAm1C7nPmgamgHTegDaAhHQKrp6m5UcXF1fZQoaAZHQJ7Kqx3V091oB03oA2gIR0Cq6nLIgeRxdX2UKGgGR0CaKtATZg5SaAdN6ANoCEdAquuke6qbSnV9lChoBkdAnlXX4O+ZgGgHTegDaAhHQKrx8weNkvt1fZQoaAZHQJyauZeAuqZoB03oA2gIR0Cq+JXIEKVqdX2UKGgGR0CfqyZzPrv9aAdN6ANoCEdAqvlzJEH+qHV9lChoBkdAngRIYWLxZ2gHTegDaAhHQKr7UJdB0IV1fZQoaAZHQJoBP3xnWatoB03oA2gIR0CrAVsaKk2xdX2UKGgGR0CdFNx4Y77saAdN6ANoCEdAqwXgdlum8HV9lChoBkdAnH6OQlruY2gHTegDaAhHQKsGZ6sySFJ1fZQoaAZHQJt3Id1dPcloB03oA2gIR0CrB50/wAlwdX2UKGgGR0Cc3CyPdVNpaAdN6ANoCEdAqw2gjQiRn3V9lChoBkdAmqLfq5byH2gHTegDaAhHQKsTB2AXl8x1fZQoaAZHQJrNs3zcynFoB03oA2gIR0CrE8mQSzw+dX2UKGgGR0CdNeMkQf6oaAdN6ANoCEdAqxWbhaTwD3V9lChoBkdAnFCIEB8x9GgHTegDaAhHQKsdHIuGsWB1fZQoaAZHQJpjqECeVcFoB03oA2gIR0CrIa0ADJU6dX2UKGgGR0CgRncZk079aAdN6ANoCEdAqyI9PnB+F3V9lChoBkdAm9PRbfP5YmgHTegDaAhHQKsjfVPN3W51fZQoaAZHQJ1RRAood+5oB03oA2gIR0CrKZcdPtUodX2UKGgGR0CebLgi/wiJaAdN6ANoCEdAqy4f16E8JXV9lChoBkdAnJT9BfKISGgHTegDaAhHQKsuyXyiEg51fZQoaAZHQJzCaM2m52BoB03oA2gIR0CrMIsewLVndX2UKGgGR0Cah1CZWq95aAdN6ANoCEdAqzmxON5t33V9lChoBkdAnLcEnG828GgHTegDaAhHQKs+S5OJtSB1fZQoaAZHQKAFT7ojfN1oB03oA2gIR0CrPtxrBTGYdX2UKGgGR0CbDiwXZXdTaAdN6ANoCEdAq0AR1ie/YnV9lChoBkdAn9RC5AhStWgHTegDaAhHQKtF5m/336B1fZQoaAZHQJw/mdI5HVhoB03oA2gIR0CrSmpxWDHwdX2UKGgGR0CfKYLrX18LaAdN6ANoCEdAq0r5E6T4cnV9lChoBkdAneKx7zCk42gHTegDaAhHQKtMNMpw0fp1fZQoaAZHQJ1/IJHAh0RoB03oA2gIR0CrVGheXzDodX2UKGgGR0CT8K1PnB+GaAdN6ANoCEdAq1qZISUTtnV9lChoBkdAnPQMwYcebWgHTegDaAhHQKtbKgaFVT91fZQoaAZHQJvs3d+G47RoB03oA2gIR0CrXHEGZ/kOdX2UKGgGR0CelrObiIcjaAdN6ANoCEdAq2KJ/iHZb3V9lChoBkdAllxtgKF7D2gHTegDaAhHQKtnPPa+N991fZQoaAZHQJQ5c4NqgyxoB03oA2gIR0CrZ8eRgZ0kdX2UKGgGR0Cck+BpYcNpaAdN6ANoCEdAq2kCW9lEqnV9lChoBkdAkv2b7bcoIGgHTegDaAhHQKtwdAO8TSN1fZQoaAZHQJbV52icoYxoB03oA2gIR0Crd5s/pt78dX2UKGgGR0CRn/w9JSR9aAdN6ANoCEdAq3gveN1hcHV9lChoBkdAk1wxuTA31mgHTegDaAhHQKt5aroW56N1fZQoaAZHQJihqqU/wAloB03oA2gIR0Crf62N3np0dX2UKGgGR0CYKJ6yB06paAdN6ANoCEdAq4Q/erMkhXV9lChoBkdAl3cpIUahpWgHTegDaAhHQKuEzK/20zF1fZQoaAZHQJZR44cWCVdoB03oA2gIR0CrhhbhFVkudX2UKGgGR0CdbZ2MbWEsaAdN6ANoCEdAq4xDqptJnXV9lChoBkdAnftJu/Dcd2gHTegDaAhHQKuS3ied07t1fZQoaAZHQJp0Ojk+5e9oB03oA2gIR0Crk7HNxEORdX2UKGgGR0CKMvI4EOiGaAdN6ANoCEdAq5WHjQzDXXV9lChoBkdAnTHwNPP9k2gHTegDaAhHQKubqXEZR9B1fZQoaAZHQJn0e/Ho5ghoB03oA2gIR0CroEFJQLuydX2UKGgGR0CbnCyrPt2LaAdN6ANoCEdAq6DIvzvqknV9lChoBkdAnNgtDMNc4mgHTegDaAhHQKuh/fWtlqd1fZQoaAZHQJyxxvm5lOJoB03oA2gIR0Crp/ijL0SRdX2UKGgGR0CZot69CeEqaAdN6ANoCEdAq61sk2P1c3V9lChoBkdAnyUhoAXEZWgHTegDaAhHQKuuLgZ0jkd1fZQoaAZHQJ5FoQTVUddoB03oA2gIR0CrsAyP2f03dX2UKGgGR0CPBCEZBLPEaAdN6ANoCEdAq7fNORDCxnV9lChoBkdAnE00e6qbSmgHTegDaAhHQKu8TrhR64V1fZQoaAZHQJuQyrilzltoB03oA2gIR0CrvNgL7XQMdX2UKGgGR0CUBSpjc2zfaAdN6ANoCEdAq74QLZzxPXVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:277354c4a3f20c4f1294fad0e50c4a79e0245de5ccfca165caa9ee72892cf8c5
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8345cbd45a76edb5874137120c2c75dce3824a69908d3c2796db2e0901a6a470
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4855808940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f48558089d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4855808a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4855808af0>", "_build": "<function ActorCriticPolicy._build at 0x7f4855808b80>", "forward": "<function ActorCriticPolicy.forward at 0x7f4855808c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4855808ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4855808d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4855808dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4855808e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4855808ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4855808f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4855806500>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684604332565119808, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFsgez96qPw+GQnbPtkriz9nZ6++McW9PYC6Kj7NIUK++JCdPXeTIEAN8MQ/zQASPoMu8L4N5Oa/sNSEvZWK7r8OIzG+naV1v9EL/76J33M/o0Q+P5jm5j8Aj32/6gGTPVkVgz9aUgrAKB4jP5vZgr9GMmVAOHyyvrK36T4STb2/PNZovg+qg70uA0O+NbVSP8lUFsBwzOW/0f36v3TPqD92tuq+hlbyv6U3HkC/TzrAdSe4v4KLBcD1sRtAirMmwAgLMD8aHlDAvnw2wKAVrT1w+nm/WlIKwK/iyL+b2YK/J/wZPy3ttz8GMZW+AvgfPzSpQr8S2Le/kXRbvss+F7+l3OO+dZWGPjK+ZD/ZqcI/0mTzvRwdwL/NZlc+zUGav72iXD7UC3u/1imNvvckD78D39k+bIKPP+4BJL+Ikcu/cPp5v1pSCsAoHiM/m9mCvwajBD93AQlAFPLTv13vhz/rVwu+Ws/QPl9Kub7J9p49xG/pPNylJD/8ifs+9jySPhOAFL5eQ92/mI5qvtn8qr9AEYk+wb91v9eFV7/zvzc/ctIEQJnTsz4lH96+6rWZv1kVgz+k5ew+KB4jP5vZgr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAInf62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwmSgPQAAAABwf96/AAAAADPi3r0AAAAAwt7zPwAAAADxrSe5AAAAABoI8D8AAAAAXTcPPgAAAACCbOu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9+z2NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFayur0AAAAA/A7wvwAAAAD4fYQ8AAAAAFSf/j8AAAAA1O8kvAAAAABjqgBAAAAAAOS8nTwAAAAAPmn+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgrIDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC6Z3C9AAAAACAw6b8AAAAAEuGavQAAAABfo9s/AAAAAJWjBj0AAAAAk+LYPwAAAAD8z+27AAAAADWn7b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADPbZQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARZsCvgAAAAA8pvy/AAAAAN4imz0AAAAAsob3PwAAAACRGqA9AAAAAFdM5D8AAAAAtqnBPQAAAACM0u6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJqlDnGKhteMAWyUTegDjAF0lEdAqmiL3qRlpXV9lChoBkdAn1C0LYwqRWgHTegDaAhHQKptNE87p3Z1fZQoaAZHQJv7wDDCP6toB03oA2gIR0Cqbc7T+ee4dX2UKGgGR0CdMTpMpPRBaAdN6ANoCEdAqm8LeyiVSnV9lChoBkdAmiIYhyKekGgHTegDaAhHQKp07uIAOrh1fZQoaAZHQJrSzKwIMSdoB03oA2gIR0CqeyEnLJS0dX2UKGgGR0CX2gX9zfaYaAdN6ANoCEdAqnv7sdDIBHV9lChoBkdAmVbtJz1bq2gHTegDaAhHQKp942Xsw+N1fZQoaAZHQJvByR6nivRoB03oA2gIR0CqhKWFFlTWdX2UKGgGR0Cb/4/oaDPGaAdN6ANoCEdAqokhfOUt7XV9lChoBkdAma5bJSzgM2gHTegDaAhHQKqJqw5eZ5R1fZQoaAZHQJr5Zo371qZoB03oA2gIR0CqiuDPOY6XdX2UKGgGR0CafJOHnEEUaAdN6ANoCEdAqpC6+Yc/+3V9lChoBkdAlGF5xR2r4mgHTegDaAhHQKqVeFLWZqp1fZQoaAZHQJyKD2ys0YVoB03oA2gIR0CqljTuF6AwdX2UKGgGR0Ca0ha86FM7aAdN6ANoCEdAqpf9UMoc73V9lChoBkdAnG0sJ6Y3N2gHTegDaAhHQKqga6tDD0l1fZQoaAZHQJkSSZssQNFoB03oA2gIR0CqpPkg4ffXdX2UKGgGR0B4ul4Y77sOaAdN6ANoCEdAqqWFGCqZMXV9lChoBkdAhifrsKLKm2gHTegDaAhHQKqmt62v0RR1fZQoaAZHQJSdL5IpYtBoB03oA2gIR0CqrNBKUVzqdX2UKGgGR0CXBTObiIcjaAdN6ANoCEdAqrFlZs9B8nV9lChoBkdAmXq4zSCvo2gHTegDaAhHQKqx8LKmsNl1fZQoaAZHQJpURD4QBghoB03oA2gIR0CqszB+nZTRdX2UKGgGR0CanptzCDVZaAdN6ANoCEdAqrwWJJoTPHV9lChoBkdAnDIRZ6lchWgHTegDaAhHQKrBRlg+hXd1fZQoaAZHQJrmRcGC7K9oB03oA2gIR0CqwdO4G2TgdX2UKGgGR0CcW7la8pTdaAdN6ANoCEdAqsML6i0v5HV9lChoBkdAm0XPd69kBmgHTegDaAhHQKrJB49HMEB1fZQoaAZHQJ44AjFAE+xoB03oA2gIR0CqzYI4uK4ydX2UKGgGR0Cbsjs1KoQ4aAdN6ANoCEdAqs4QSSNfgXV9lChoBkdAnG04cR15jmgHTegDaAhHQKrPRFzdUKl1fZQoaAZHQJ5x0VoHs1NoB03oA2gIR0Cq1u0KJEYwdX2UKGgGR0CbtAimEXchaAdN6ANoCEdAqt2iZc9nsnV9lChoBkdAnTkRYV6/qWgHTegDaAhHQKreLru6VdJ1fZQoaAZHQIgerUPQOWloB03oA2gIR0Cq32MP8Q7LdX2UKGgGR0Cbh04wAU+LaAdN6ANoCEdAquVO6/ZdwHV9lChoBkdAm1C7nPmgamgHTegDaAhHQKrp6m5UcXF1fZQoaAZHQJ7Kqx3V091oB03oA2gIR0Cq6nLIgeRxdX2UKGgGR0CaKtATZg5SaAdN6ANoCEdAquuke6qbSnV9lChoBkdAnlXX4O+ZgGgHTegDaAhHQKrx8weNkvt1fZQoaAZHQJyauZeAuqZoB03oA2gIR0Cq+JXIEKVqdX2UKGgGR0CfqyZzPrv9aAdN6ANoCEdAqvlzJEH+qHV9lChoBkdAngRIYWLxZ2gHTegDaAhHQKr7UJdB0IV1fZQoaAZHQJoBP3xnWatoB03oA2gIR0CrAVsaKk2xdX2UKGgGR0CdFNx4Y77saAdN6ANoCEdAqwXgdlum8HV9lChoBkdAnH6OQlruY2gHTegDaAhHQKsGZ6sySFJ1fZQoaAZHQJt3Id1dPcloB03oA2gIR0CrB50/wAlwdX2UKGgGR0Cc3CyPdVNpaAdN6ANoCEdAqw2gjQiRn3V9lChoBkdAmqLfq5byH2gHTegDaAhHQKsTB2AXl8x1fZQoaAZHQJrNs3zcynFoB03oA2gIR0CrE8mQSzw+dX2UKGgGR0CdNeMkQf6oaAdN6ANoCEdAqxWbhaTwD3V9lChoBkdAnFCIEB8x9GgHTegDaAhHQKsdHIuGsWB1fZQoaAZHQJpjqECeVcFoB03oA2gIR0CrIa0ADJU6dX2UKGgGR0CgRncZk079aAdN6ANoCEdAqyI9PnB+F3V9lChoBkdAm9PRbfP5YmgHTegDaAhHQKsjfVPN3W51fZQoaAZHQJ1RRAood+5oB03oA2gIR0CrKZcdPtUodX2UKGgGR0CebLgi/wiJaAdN6ANoCEdAqy4f16E8JXV9lChoBkdAnJT9BfKISGgHTegDaAhHQKsuyXyiEg51fZQoaAZHQJzCaM2m52BoB03oA2gIR0CrMIsewLVndX2UKGgGR0Cah1CZWq95aAdN6ANoCEdAqzmxON5t33V9lChoBkdAnLcEnG828GgHTegDaAhHQKs+S5OJtSB1fZQoaAZHQKAFT7ojfN1oB03oA2gIR0CrPtxrBTGYdX2UKGgGR0CbDiwXZXdTaAdN6ANoCEdAq0AR1ie/YnV9lChoBkdAn9RC5AhStWgHTegDaAhHQKtF5m/336B1fZQoaAZHQJw/mdI5HVhoB03oA2gIR0CrSmpxWDHwdX2UKGgGR0CfKYLrX18LaAdN6ANoCEdAq0r5E6T4cnV9lChoBkdAneKx7zCk42gHTegDaAhHQKtMNMpw0fp1fZQoaAZHQJ1/IJHAh0RoB03oA2gIR0CrVGheXzDodX2UKGgGR0CT8K1PnB+GaAdN6ANoCEdAq1qZISUTtnV9lChoBkdAnPQMwYcebWgHTegDaAhHQKtbKgaFVT91fZQoaAZHQJvs3d+G47RoB03oA2gIR0CrXHEGZ/kOdX2UKGgGR0CelrObiIcjaAdN6ANoCEdAq2KJ/iHZb3V9lChoBkdAllxtgKF7D2gHTegDaAhHQKtnPPa+N991fZQoaAZHQJQ5c4NqgyxoB03oA2gIR0CrZ8eRgZ0kdX2UKGgGR0Cck+BpYcNpaAdN6ANoCEdAq2kCW9lEqnV9lChoBkdAkv2b7bcoIGgHTegDaAhHQKtwdAO8TSN1fZQoaAZHQJbV52icoYxoB03oA2gIR0Crd5s/pt78dX2UKGgGR0CRn/w9JSR9aAdN6ANoCEdAq3gveN1hcHV9lChoBkdAk1wxuTA31mgHTegDaAhHQKt5aroW56N1fZQoaAZHQJihqqU/wAloB03oA2gIR0Crf62N3np0dX2UKGgGR0CYKJ6yB06paAdN6ANoCEdAq4Q/erMkhXV9lChoBkdAl3cpIUahpWgHTegDaAhHQKuEzK/20zF1fZQoaAZHQJZR44cWCVdoB03oA2gIR0CrhhbhFVkudX2UKGgGR0CdbZ2MbWEsaAdN6ANoCEdAq4xDqptJnXV9lChoBkdAnftJu/Dcd2gHTegDaAhHQKuS3ied07t1fZQoaAZHQJp0Ojk+5e9oB03oA2gIR0Crk7HNxEORdX2UKGgGR0CKMvI4EOiGaAdN6ANoCEdAq5WHjQzDXXV9lChoBkdAnTHwNPP9k2gHTegDaAhHQKubqXEZR9B1fZQoaAZHQJn0e/Ho5ghoB03oA2gIR0CroEFJQLuydX2UKGgGR0CbnCyrPt2LaAdN6ANoCEdAq6DIvzvqknV9lChoBkdAnNgtDMNc4mgHTegDaAhHQKuh/fWtlqd1fZQoaAZHQJyxxvm5lOJoB03oA2gIR0Crp/ijL0SRdX2UKGgGR0CZot69CeEqaAdN6ANoCEdAq61sk2P1c3V9lChoBkdAnyUhoAXEZWgHTegDaAhHQKuuLgZ0jkd1fZQoaAZHQJ5FoQTVUddoB03oA2gIR0CrsAyP2f03dX2UKGgGR0CPBCEZBLPEaAdN6ANoCEdAq7fNORDCxnV9lChoBkdAnE00e6qbSmgHTegDaAhHQKu8TrhR64V1fZQoaAZHQJuQyrilzltoB03oA2gIR0CrvNgL7XQMdX2UKGgGR0CUBSpjc2zfaAdN6ANoCEdAq74QLZzxPXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a18539725cf29fc31eb03c60c308593612b59ff82ba47f91d7bcfd3577243da
|
3 |
+
size 1145797
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1142.6179386705874, "std_reward": 247.5798239821922, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-20T18:44:38.423186"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39a4721fcc22458861a3d9dec4dbce39ca700f629cd95d19764073292428227d
|
3 |
+
size 2176
|