ZyXin commited on
Commit
6a8d242
1 Parent(s): 07f196f

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.42 +/- 0.13
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:756912c0008636a3be63a5e4d66ee458ee3749e44e61b2be729ac42034181cd1
3
+ size 108075
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4855809090>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f4855806640>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1684608514150246546,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAQvevPj2Yn7suNAg/QvevPj2Yn7suNAg/QvevPj2Yn7suNAg/QvevPj2Yn7suNAg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3crKP9ZCgb/ogZk/Bemhv5BMg78Ruc++LKvDP8yxqL8+lx0/rrmWP7FZtr8AL5y/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABC968+PZifuy40CD9DNtO6ej07uk9qErxC968+PZifuy40CD9DNtO6ej07uk9qErxC968+PZifuy40CD9DNtO6ej07uk9qErxC968+PZifuy40CD9DNtO6ej07uk9qEryUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.3436833 -0.00487044 0.5320462 ]\n [ 0.3436833 -0.00487044 0.5320462 ]\n [ 0.3436833 -0.00487044 0.5320462 ]\n [ 0.3436833 -0.00487044 0.5320462 ]]",
38
+ "desired_goal": "[[ 1.5843159 -1.0098522 1.1992769 ]\n [-1.2649237 -1.025774 -0.40570882]\n [ 1.5286613 -1.3179259 0.615589 ]\n [ 1.1775415 -1.4246122 -1.2201843 ]]",
39
+ "observation": "[[ 0.3436833 -0.00487044 0.5320462 -0.00161142 -0.00071426 -0.00893648]\n [ 0.3436833 -0.00487044 0.5320462 -0.00161142 -0.00071426 -0.00893648]\n [ 0.3436833 -0.00487044 0.5320462 -0.00161142 -0.00071426 -0.00893648]\n [ 0.3436833 -0.00487044 0.5320462 -0.00161142 -0.00071426 -0.00893648]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAceZ1vPZQAj5rSJg+uBaoPcp0vT2vyzU+X60OPvF2BzwOAFg+kMuRvA3qBr6/Q30+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.01500855 0.12726197 0.2974275 ]\n [ 0.08207458 0.09250791 0.1775348 ]\n [ 0.13933323 0.0082681 0.21093771]\n [-0.01779726 -0.13175221 0.24732874]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdeeJ52wB5r+UhpRSlIwBbJRLMowBdJRHQKaGhS619fF1fZQoaAZoCWgPQwhfQC/cuTDnv5SGlFKUaBVLMmgWR0CmhkZ1vES/dX2UKGgGaAloD0MIpiiXxi884L+UhpRSlGgVSzJoFkdApoYHfdhy83V9lChoBmgJaA9DCAa8zLBRFvC/lIaUUpRoFUsyaBZHQKaFxkXDWLB1fZQoaAZoCWgPQwi610l9Wdrcv5SGlFKUaBVLMmgWR0Cmh6Dm8ujAdX2UKGgGaAloD0MIaaz9ne1R4r+UhpRSlGgVSzJoFkdApodiA4GUwHV9lChoBmgJaA9DCLsmpDUGHeS/lIaUUpRoFUsyaBZHQKaHIu9OARV1fZQoaAZoCWgPQwi0W8tkOJ7Yv5SGlFKUaBVLMmgWR0CmhuGReTmodX2UKGgGaAloD0MI9DXLZaNz07+UhpRSlGgVSzJoFkdApoixGMGX5XV9lChoBmgJaA9DCObmG9E96+K/lIaUUpRoFUsyaBZHQKaIclVtGd91fZQoaAZoCWgPQwgvFLAdjNjfv5SGlFKUaBVLMmgWR0CmiDNKh+OPdX2UKGgGaAloD0MIHSCYo8fv5b+UhpRSlGgVSzJoFkdApofx9NN8E3V9lChoBmgJaA9DCOl942vPLNu/lIaUUpRoFUsyaBZHQKaJ034sVcl1fZQoaAZoCWgPQwgSE9TwLaznv5SGlFKUaBVLMmgWR0CmiZSYG+sYdX2UKGgGaAloD0MIk1LQ7SUN5b+UhpRSlGgVSzJoFkdApolVnEl3QnV9lChoBmgJaA9DCBe5p6s7lua/lIaUUpRoFUsyaBZHQKaJFEc81XN1fZQoaAZoCWgPQwju7gG6L2fhv5SGlFKUaBVLMmgWR0Cmiu+sxO+JdX2UKGgGaAloD0MI0/iFV5K847+UhpRSlGgVSzJoFkdApoqw5eZ5RnV9lChoBmgJaA9DCKYJ20/GeOK/lIaUUpRoFUsyaBZHQKaKcd9Ujs51fZQoaAZoCWgPQwjuIkxRLg3gv5SGlFKUaBVLMmgWR0CmijBz/6wddX2UKGgGaAloD0MIcmw9Qzhmx7+UhpRSlGgVSzJoFkdApowSe2/i53V9lChoBmgJaA9DCFcKgVziyNS/lIaUUpRoFUsyaBZHQKaL09alk6N1fZQoaAZoCWgPQwil12ZjJebQv5SGlFKUaBVLMmgWR0Cmi5TySV4YdX2UKGgGaAloD0MILJrOTgZH3L+UhpRSlGgVSzJoFkdApotTt1IRRXV9lChoBmgJaA9DCKSOjquRXeW/lIaUUpRoFUsyaBZHQKaNSrZrYXh1fZQoaAZoCWgPQwjCpWPOM/bfv5SGlFKUaBVLMmgWR0CmjQvhqCYkdX2UKGgGaAloD0MI5V/LK9fb4b+UhpRSlGgVSzJoFkdApozM1ZTya3V9lChoBmgJaA9DCLx6FRkdEOm/lIaUUpRoFUsyaBZHQKaMi55qubJ1fZQoaAZoCWgPQwhjX7LxYMvwv5SGlFKUaBVLMmgWR0CmjtQkHD77dX2UKGgGaAloD0MI5e0IpwUv1r+UhpRSlGgVSzJoFkdApo6WdAgPmXV9lChoBmgJaA9DCKzFpwAYz9K/lIaUUpRoFUsyaBZHQKaOWElE7XB1fZQoaAZoCWgPQwhR+dfyyvXlv5SGlFKUaBVLMmgWR0CmjhlI3BHkdX2UKGgGaAloD0MI/5O/e0cN5r+UhpRSlGgVSzJoFkdAppCnz8P4EnV9lChoBmgJaA9DCDlgV5OnrNq/lIaUUpRoFUsyaBZHQKaQacghbGF1fZQoaAZoCWgPQwhx4xbzc8Plv5SGlFKUaBVLMmgWR0CmkCuLaVUudX2UKGgGaAloD0MIh/pd2Jqt5b+UhpRSlGgVSzJoFkdApo/rM/yGz3V9lChoBmgJaA9DCIkK1c3F3+S/lIaUUpRoFUsyaBZHQKaSdzmOlwd1fZQoaAZoCWgPQwgP7zmwHCHav5SGlFKUaBVLMmgWR0CmkjlBY3efdX2UKGgGaAloD0MIIchBCTNt3L+UhpRSlGgVSzJoFkdAppH7DXOGCnV9lChoBmgJaA9DCOV620yFeOS/lIaUUpRoFUsyaBZHQKaRumP5pJx1fZQoaAZoCWgPQwjONjemJyzev5SGlFKUaBVLMmgWR0CmlGOw5eZ5dX2UKGgGaAloD0MI6DHKMy8H4b+UhpRSlGgVSzJoFkdAppQl3OfNA3V9lChoBmgJaA9DCHHLR1LSQ+O/lIaUUpRoFUsyaBZHQKaT58c+7lJ1fZQoaAZoCWgPQwiqmbUUkPbXv5SGlFKUaBVLMmgWR0Cmk6di2DxtdX2UKGgGaAloD0MIQL6ECg4v2L+UhpRSlGgVSzJoFkdAppZVlbu+iHV9lChoBmgJaA9DCAISTaCIRdm/lIaUUpRoFUsyaBZHQKaWF8Muvll1fZQoaAZoCWgPQwg9npYfuMrXv5SGlFKUaBVLMmgWR0CmldmnXNC7dX2UKGgGaAloD0MIguMybmog5b+UhpRSlGgVSzJoFkdAppWZPZZjhHV9lChoBmgJaA9DCD6T/fM04OO/lIaUUpRoFUsyaBZHQKaYM0WuX/p1fZQoaAZoCWgPQwjAr5EkCNfnv5SGlFKUaBVLMmgWR0Cml/WHtWuHdX2UKGgGaAloD0MIN92yQ/zD37+UhpRSlGgVSzJoFkdAppe3hS9/SnV9lChoBmgJaA9DCChEwCFUqeC/lIaUUpRoFUsyaBZHQKaXdwT/Q0J1fZQoaAZoCWgPQwjHn6hsWNPiv5SGlFKUaBVLMmgWR0Cmmdbj1f3OdX2UKGgGaAloD0MI4j0HliNk1r+UhpRSlGgVSzJoFkdAppmYP3BYWHV9lChoBmgJaA9DCNKnVfSH5uO/lIaUUpRoFUsyaBZHQKaZWWvbGm11fZQoaAZoCWgPQwjeVnptNlbSv5SGlFKUaBVLMmgWR0CmmRgLqlgudX2UKGgGaAloD0MIRS+jWG5p1b+UhpRSlGgVSzJoFkdApprssg+yJXV9lChoBmgJaA9DCMqMt5Vem9e/lIaUUpRoFUsyaBZHQKaaresPrfN1fZQoaAZoCWgPQwgCfo0kQTjhv5SGlFKUaBVLMmgWR0Cmmm7Sy+pPdX2UKGgGaAloD0MIs5WX/E/+2b+UhpRSlGgVSzJoFkdAppotf9gndHV9lChoBmgJaA9DCIL917lpM+K/lIaUUpRoFUsyaBZHQKacD5aePJd1fZQoaAZoCWgPQwgDzlKynITXv5SGlFKUaBVLMmgWR0Cmm9DFId2gdX2UKGgGaAloD0MIfa1LjdDP1L+UhpRSlGgVSzJoFkdAppuRuTA31nV9lChoBmgJaA9DCAwiUtMuptu/lIaUUpRoFUsyaBZHQKabUF0xM391fZQoaAZoCWgPQwiAgosVNZjSv5SGlFKUaBVLMmgWR0CmnSuz6ab4dX2UKGgGaAloD0MIqG+Z02Ux3L+UhpRSlGgVSzJoFkdAppzs7ZFoc3V9lChoBmgJaA9DCApK0cq9QOC/lIaUUpRoFUsyaBZHQKacreWOZLJ1fZQoaAZoCWgPQwiX/iWpTDHhv5SGlFKUaBVLMmgWR0CmnGyFGoaUdX2UKGgGaAloD0MIwD46deWz37+UhpRSlGgVSzJoFkdApp487hegMHV9lChoBmgJaA9DCHA/4IEBhN+/lIaUUpRoFUsyaBZHQKad/jiGWUt1fZQoaAZoCWgPQwggKo2Y2efVv5SGlFKUaBVLMmgWR0Cmnb8ynDR/dX2UKGgGaAloD0MIBTQRNjy94b+UhpRSlGgVSzJoFkdApp19vhqCYnV9lChoBmgJaA9DCNgLBWwHI+K/lIaUUpRoFUsyaBZHQKafYhStNi91fZQoaAZoCWgPQwjdQlciUP3jv5SGlFKUaBVLMmgWR0CmnyRo7FKkdX2UKGgGaAloD0MI9gzhmGVP3r+UhpRSlGgVSzJoFkdApp7mBjFyaXV9lChoBmgJaA9DCCxlGeJYF9a/lIaUUpRoFUsyaBZHQKaepWpZOi51fZQoaAZoCWgPQwhivrwA++jTv5SGlFKUaBVLMmgWR0CmoHsBp5/tdX2UKGgGaAloD0MIdcdim1Q03b+UhpRSlGgVSzJoFkdApqA8Ltu1nnV9lChoBmgJaA9DCG6FsBpLWOK/lIaUUpRoFUsyaBZHQKaf/RNRFZx1fZQoaAZoCWgPQwjCwHPv4ZLQv5SGlFKUaBVLMmgWR0Cmn7vB7/n4dX2UKGgGaAloD0MIRBZp4h1g6L+UhpRSlGgVSzJoFkdApqGYA0bcXXV9lChoBmgJaA9DCMWu7e2W5OO/lIaUUpRoFUsyaBZHQKahWSMcZLt1fZQoaAZoCWgPQwgrvqHw2brrv5SGlFKUaBVLMmgWR0CmoRobXHzZdX2UKGgGaAloD0MIms+52/XS2L+UhpRSlGgVSzJoFkdApqDYsiB5HHV9lChoBmgJaA9DCCY5YFeTp9u/lIaUUpRoFUsyaBZHQKain3zMA3l1fZQoaAZoCWgPQwgt0VlmEYrcv5SGlFKUaBVLMmgWR0CmomC3PRiPdX2UKGgGaAloD0MI2zaMguBx4b+UhpRSlGgVSzJoFkdApqIhm03OwHV9lChoBmgJaA9DCLQiaqLPR9y/lIaUUpRoFUsyaBZHQKah4CROk+J1fZQoaAZoCWgPQwjpJjEIrBzYv5SGlFKUaBVLMmgWR0Cmo7ktNBWxdX2UKGgGaAloD0MI81meB3dn2L+UhpRSlGgVSzJoFkdApqN6YiPhh3V9lChoBmgJaA9DCNTS3AphNc6/lIaUUpRoFUsyaBZHQKajO2rGR3h1fZQoaAZoCWgPQwjV6qurArXRv5SGlFKUaBVLMmgWR0CmovoN/e+FdX2UKGgGaAloD0MIq9BALJs56r+UhpRSlGgVSzJoFkdApqTLabnX/nV9lChoBmgJaA9DCEJaY9AJoeK/lIaUUpRoFUsyaBZHQKakjI8yN4t1fZQoaAZoCWgPQwhVwaikTkDcv5SGlFKUaBVLMmgWR0CmpE2iUPhAdX2UKGgGaAloD0MIDrxa7syE4r+UhpRSlGgVSzJoFkdApqQM1EVnEnV9lChoBmgJaA9DCC82rRQCuea/lIaUUpRoFUsyaBZHQKal3974SHx1fZQoaAZoCWgPQwhuFcRA177iv5SGlFKUaBVLMmgWR0CmpaD9fkWAdX2UKGgGaAloD0MIMv/omzQN7L+UhpRSlGgVSzJoFkdApqViCL/CInV9lChoBmgJaA9DCF0ZVBucCOi/lIaUUpRoFUsyaBZHQKalIKAJ9iN1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d27364c542e6e238bb1981d93b23da9a66b750cb7a8c616fdbf48f958ce45a11
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46a5e8489c57a46b0ab862740f9d547ebf171567ada35760003ae4b7339dae36
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4855809090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4855806640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684608514150246546, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAQvevPj2Yn7suNAg/QvevPj2Yn7suNAg/QvevPj2Yn7suNAg/QvevPj2Yn7suNAg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3crKP9ZCgb/ogZk/Bemhv5BMg78Ruc++LKvDP8yxqL8+lx0/rrmWP7FZtr8AL5y/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABC968+PZifuy40CD9DNtO6ej07uk9qErxC968+PZifuy40CD9DNtO6ej07uk9qErxC968+PZifuy40CD9DNtO6ej07uk9qErxC968+PZifuy40CD9DNtO6ej07uk9qEryUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3436833 -0.00487044 0.5320462 ]\n [ 0.3436833 -0.00487044 0.5320462 ]\n [ 0.3436833 -0.00487044 0.5320462 ]\n [ 0.3436833 -0.00487044 0.5320462 ]]", "desired_goal": "[[ 1.5843159 -1.0098522 1.1992769 ]\n [-1.2649237 -1.025774 -0.40570882]\n [ 1.5286613 -1.3179259 0.615589 ]\n [ 1.1775415 -1.4246122 -1.2201843 ]]", "observation": "[[ 0.3436833 -0.00487044 0.5320462 -0.00161142 -0.00071426 -0.00893648]\n [ 0.3436833 -0.00487044 0.5320462 -0.00161142 -0.00071426 -0.00893648]\n [ 0.3436833 -0.00487044 0.5320462 -0.00161142 -0.00071426 -0.00893648]\n [ 0.3436833 -0.00487044 0.5320462 -0.00161142 -0.00071426 -0.00893648]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAceZ1vPZQAj5rSJg+uBaoPcp0vT2vyzU+X60OPvF2BzwOAFg+kMuRvA3qBr6/Q30+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01500855 0.12726197 0.2974275 ]\n [ 0.08207458 0.09250791 0.1775348 ]\n [ 0.13933323 0.0082681 0.21093771]\n [-0.01779726 -0.13175221 0.24732874]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdeeJ52wB5r+UhpRSlIwBbJRLMowBdJRHQKaGhS619fF1fZQoaAZoCWgPQwhfQC/cuTDnv5SGlFKUaBVLMmgWR0CmhkZ1vES/dX2UKGgGaAloD0MIpiiXxi884L+UhpRSlGgVSzJoFkdApoYHfdhy83V9lChoBmgJaA9DCAa8zLBRFvC/lIaUUpRoFUsyaBZHQKaFxkXDWLB1fZQoaAZoCWgPQwi610l9Wdrcv5SGlFKUaBVLMmgWR0Cmh6Dm8ujAdX2UKGgGaAloD0MIaaz9ne1R4r+UhpRSlGgVSzJoFkdApodiA4GUwHV9lChoBmgJaA9DCLsmpDUGHeS/lIaUUpRoFUsyaBZHQKaHIu9OARV1fZQoaAZoCWgPQwi0W8tkOJ7Yv5SGlFKUaBVLMmgWR0CmhuGReTmodX2UKGgGaAloD0MI9DXLZaNz07+UhpRSlGgVSzJoFkdApoixGMGX5XV9lChoBmgJaA9DCObmG9E96+K/lIaUUpRoFUsyaBZHQKaIclVtGd91fZQoaAZoCWgPQwgvFLAdjNjfv5SGlFKUaBVLMmgWR0CmiDNKh+OPdX2UKGgGaAloD0MIHSCYo8fv5b+UhpRSlGgVSzJoFkdApofx9NN8E3V9lChoBmgJaA9DCOl942vPLNu/lIaUUpRoFUsyaBZHQKaJ034sVcl1fZQoaAZoCWgPQwgSE9TwLaznv5SGlFKUaBVLMmgWR0CmiZSYG+sYdX2UKGgGaAloD0MIk1LQ7SUN5b+UhpRSlGgVSzJoFkdApolVnEl3QnV9lChoBmgJaA9DCBe5p6s7lua/lIaUUpRoFUsyaBZHQKaJFEc81XN1fZQoaAZoCWgPQwju7gG6L2fhv5SGlFKUaBVLMmgWR0Cmiu+sxO+JdX2UKGgGaAloD0MI0/iFV5K847+UhpRSlGgVSzJoFkdApoqw5eZ5RnV9lChoBmgJaA9DCKYJ20/GeOK/lIaUUpRoFUsyaBZHQKaKcd9Ujs51fZQoaAZoCWgPQwjuIkxRLg3gv5SGlFKUaBVLMmgWR0CmijBz/6wddX2UKGgGaAloD0MIcmw9Qzhmx7+UhpRSlGgVSzJoFkdApowSe2/i53V9lChoBmgJaA9DCFcKgVziyNS/lIaUUpRoFUsyaBZHQKaL09alk6N1fZQoaAZoCWgPQwil12ZjJebQv5SGlFKUaBVLMmgWR0Cmi5TySV4YdX2UKGgGaAloD0MILJrOTgZH3L+UhpRSlGgVSzJoFkdApotTt1IRRXV9lChoBmgJaA9DCKSOjquRXeW/lIaUUpRoFUsyaBZHQKaNSrZrYXh1fZQoaAZoCWgPQwjCpWPOM/bfv5SGlFKUaBVLMmgWR0CmjQvhqCYkdX2UKGgGaAloD0MI5V/LK9fb4b+UhpRSlGgVSzJoFkdApozM1ZTya3V9lChoBmgJaA9DCLx6FRkdEOm/lIaUUpRoFUsyaBZHQKaMi55qubJ1fZQoaAZoCWgPQwhjX7LxYMvwv5SGlFKUaBVLMmgWR0CmjtQkHD77dX2UKGgGaAloD0MI5e0IpwUv1r+UhpRSlGgVSzJoFkdApo6WdAgPmXV9lChoBmgJaA9DCKzFpwAYz9K/lIaUUpRoFUsyaBZHQKaOWElE7XB1fZQoaAZoCWgPQwhR+dfyyvXlv5SGlFKUaBVLMmgWR0CmjhlI3BHkdX2UKGgGaAloD0MI/5O/e0cN5r+UhpRSlGgVSzJoFkdAppCnz8P4EnV9lChoBmgJaA9DCDlgV5OnrNq/lIaUUpRoFUsyaBZHQKaQacghbGF1fZQoaAZoCWgPQwhx4xbzc8Plv5SGlFKUaBVLMmgWR0CmkCuLaVUudX2UKGgGaAloD0MIh/pd2Jqt5b+UhpRSlGgVSzJoFkdApo/rM/yGz3V9lChoBmgJaA9DCIkK1c3F3+S/lIaUUpRoFUsyaBZHQKaSdzmOlwd1fZQoaAZoCWgPQwgP7zmwHCHav5SGlFKUaBVLMmgWR0CmkjlBY3efdX2UKGgGaAloD0MIIchBCTNt3L+UhpRSlGgVSzJoFkdAppH7DXOGCnV9lChoBmgJaA9DCOV620yFeOS/lIaUUpRoFUsyaBZHQKaRumP5pJx1fZQoaAZoCWgPQwjONjemJyzev5SGlFKUaBVLMmgWR0CmlGOw5eZ5dX2UKGgGaAloD0MI6DHKMy8H4b+UhpRSlGgVSzJoFkdAppQl3OfNA3V9lChoBmgJaA9DCHHLR1LSQ+O/lIaUUpRoFUsyaBZHQKaT58c+7lJ1fZQoaAZoCWgPQwiqmbUUkPbXv5SGlFKUaBVLMmgWR0Cmk6di2DxtdX2UKGgGaAloD0MIQL6ECg4v2L+UhpRSlGgVSzJoFkdAppZVlbu+iHV9lChoBmgJaA9DCAISTaCIRdm/lIaUUpRoFUsyaBZHQKaWF8Muvll1fZQoaAZoCWgPQwg9npYfuMrXv5SGlFKUaBVLMmgWR0CmldmnXNC7dX2UKGgGaAloD0MIguMybmog5b+UhpRSlGgVSzJoFkdAppWZPZZjhHV9lChoBmgJaA9DCD6T/fM04OO/lIaUUpRoFUsyaBZHQKaYM0WuX/p1fZQoaAZoCWgPQwjAr5EkCNfnv5SGlFKUaBVLMmgWR0Cml/WHtWuHdX2UKGgGaAloD0MIN92yQ/zD37+UhpRSlGgVSzJoFkdAppe3hS9/SnV9lChoBmgJaA9DCChEwCFUqeC/lIaUUpRoFUsyaBZHQKaXdwT/Q0J1fZQoaAZoCWgPQwjHn6hsWNPiv5SGlFKUaBVLMmgWR0Cmmdbj1f3OdX2UKGgGaAloD0MI4j0HliNk1r+UhpRSlGgVSzJoFkdAppmYP3BYWHV9lChoBmgJaA9DCNKnVfSH5uO/lIaUUpRoFUsyaBZHQKaZWWvbGm11fZQoaAZoCWgPQwjeVnptNlbSv5SGlFKUaBVLMmgWR0CmmRgLqlgudX2UKGgGaAloD0MIRS+jWG5p1b+UhpRSlGgVSzJoFkdApprssg+yJXV9lChoBmgJaA9DCMqMt5Vem9e/lIaUUpRoFUsyaBZHQKaaresPrfN1fZQoaAZoCWgPQwgCfo0kQTjhv5SGlFKUaBVLMmgWR0Cmmm7Sy+pPdX2UKGgGaAloD0MIs5WX/E/+2b+UhpRSlGgVSzJoFkdAppotf9gndHV9lChoBmgJaA9DCIL917lpM+K/lIaUUpRoFUsyaBZHQKacD5aePJd1fZQoaAZoCWgPQwgDzlKynITXv5SGlFKUaBVLMmgWR0Cmm9DFId2gdX2UKGgGaAloD0MIfa1LjdDP1L+UhpRSlGgVSzJoFkdAppuRuTA31nV9lChoBmgJaA9DCAwiUtMuptu/lIaUUpRoFUsyaBZHQKabUF0xM391fZQoaAZoCWgPQwiAgosVNZjSv5SGlFKUaBVLMmgWR0CmnSuz6ab4dX2UKGgGaAloD0MIqG+Z02Ux3L+UhpRSlGgVSzJoFkdAppzs7ZFoc3V9lChoBmgJaA9DCApK0cq9QOC/lIaUUpRoFUsyaBZHQKacreWOZLJ1fZQoaAZoCWgPQwiX/iWpTDHhv5SGlFKUaBVLMmgWR0CmnGyFGoaUdX2UKGgGaAloD0MIwD46deWz37+UhpRSlGgVSzJoFkdApp487hegMHV9lChoBmgJaA9DCHA/4IEBhN+/lIaUUpRoFUsyaBZHQKad/jiGWUt1fZQoaAZoCWgPQwggKo2Y2efVv5SGlFKUaBVLMmgWR0Cmnb8ynDR/dX2UKGgGaAloD0MIBTQRNjy94b+UhpRSlGgVSzJoFkdApp19vhqCYnV9lChoBmgJaA9DCNgLBWwHI+K/lIaUUpRoFUsyaBZHQKafYhStNi91fZQoaAZoCWgPQwjdQlciUP3jv5SGlFKUaBVLMmgWR0CmnyRo7FKkdX2UKGgGaAloD0MI9gzhmGVP3r+UhpRSlGgVSzJoFkdApp7mBjFyaXV9lChoBmgJaA9DCCxlGeJYF9a/lIaUUpRoFUsyaBZHQKaepWpZOi51fZQoaAZoCWgPQwhivrwA++jTv5SGlFKUaBVLMmgWR0CmoHsBp5/tdX2UKGgGaAloD0MIdcdim1Q03b+UhpRSlGgVSzJoFkdApqA8Ltu1nnV9lChoBmgJaA9DCG6FsBpLWOK/lIaUUpRoFUsyaBZHQKaf/RNRFZx1fZQoaAZoCWgPQwjCwHPv4ZLQv5SGlFKUaBVLMmgWR0Cmn7vB7/n4dX2UKGgGaAloD0MIRBZp4h1g6L+UhpRSlGgVSzJoFkdApqGYA0bcXXV9lChoBmgJaA9DCMWu7e2W5OO/lIaUUpRoFUsyaBZHQKahWSMcZLt1fZQoaAZoCWgPQwgrvqHw2brrv5SGlFKUaBVLMmgWR0CmoRobXHzZdX2UKGgGaAloD0MIms+52/XS2L+UhpRSlGgVSzJoFkdApqDYsiB5HHV9lChoBmgJaA9DCCY5YFeTp9u/lIaUUpRoFUsyaBZHQKain3zMA3l1fZQoaAZoCWgPQwgt0VlmEYrcv5SGlFKUaBVLMmgWR0CmomC3PRiPdX2UKGgGaAloD0MI2zaMguBx4b+UhpRSlGgVSzJoFkdApqIhm03OwHV9lChoBmgJaA9DCLQiaqLPR9y/lIaUUpRoFUsyaBZHQKah4CROk+J1fZQoaAZoCWgPQwjpJjEIrBzYv5SGlFKUaBVLMmgWR0Cmo7ktNBWxdX2UKGgGaAloD0MI81meB3dn2L+UhpRSlGgVSzJoFkdApqN6YiPhh3V9lChoBmgJaA9DCNTS3AphNc6/lIaUUpRoFUsyaBZHQKajO2rGR3h1fZQoaAZoCWgPQwjV6qurArXRv5SGlFKUaBVLMmgWR0CmovoN/e+FdX2UKGgGaAloD0MIq9BALJs56r+UhpRSlGgVSzJoFkdApqTLabnX/nV9lChoBmgJaA9DCEJaY9AJoeK/lIaUUpRoFUsyaBZHQKakjI8yN4t1fZQoaAZoCWgPQwhVwaikTkDcv5SGlFKUaBVLMmgWR0CmpE2iUPhAdX2UKGgGaAloD0MIDrxa7syE4r+UhpRSlGgVSzJoFkdApqQM1EVnEnV9lChoBmgJaA9DCC82rRQCuea/lIaUUpRoFUsyaBZHQKal3974SHx1fZQoaAZoCWgPQwhuFcRA177iv5SGlFKUaBVLMmgWR0CmpaD9fkWAdX2UKGgGaAloD0MIMv/omzQN7L+UhpRSlGgVSzJoFkdApqViCL/CInV9lChoBmgJaA9DCF0ZVBucCOi/lIaUUpRoFUsyaBZHQKalIKAJ9iN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (298 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.4180296239559539, "std_reward": 0.12917596304121132, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-20T19:36:56.399440"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffc0bbd300a5eb09bc10b45792fcff5a434314f76e2306ad622844c8c32f9805
3
+ size 2387